Electrophysiological classes of layer 2/3 pyramidal cells in monkey prefrontal cortex. 2012

A V Zaitsev, and N V Povysheva, and G Gonzalez-Burgos, and D A Lewis
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia. aleksey_zaitsev@mail.ru

The activity of supragranular pyramidal neurons in the dorsolateral prefrontal cortex (DLPFC) neurons is hypothesized to be a key contributor to the cellular basis of working memory in primates. Therefore, the intrinsic membrane properties, a crucial determinant of a neuron's functional properties, are important for the role of DLPFC pyramidal neurons in working memory. The present study aimed to investigate the biophysical properties of pyramidal cells in layer 2/3 of monkey DLPFC to create an unbiased electrophysiological classification of these cells. Whole cell voltage recordings in the slice preparation were performed in 77 pyramidal cells, and 24 electrophysiological measures of their passive and active intrinsic membrane properties were analyzed. Based on the results of cluster analysis of 16 independent electrophysiological variables, 4 distinct electrophysiological classes of monkey pyramidal cells were determined. Two classes contain regular-spiking neurons with low and high excitability and constitute 52% of the pyramidal cells sampled. These subclasses of regular-spiking neurons mostly differ in their input resistance, minimum current that evoked firing, and current-to-frequency transduction properties. A third class of pyramidal cells includes low-threshold spiking cells (17%), which fire a burst of three-five spikes followed by regular firing at all suprathreshold current intensities. The last class consists of cells with an intermediate firing pattern (31%). These cells have two modes of firing response, regular spiking and bursting discharge, depending on the strength of stimulation and resting membrane potential. Our results show that diversity in the functional properties of DLPFC pyramidal cells may contribute to heterogeneous modes of information processing during working memory and other cognitive operations that engage the activity of cortical circuits in the superficial layers of the DLPFC.

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017397 Prefrontal Cortex The rostral part of the frontal lobe, bounded by the inferior precentral fissure in humans, which receives projection fibers from the MEDIODORSAL NUCLEUS OF THE THALAMUS. The prefrontal cortex receives afferent fibers from numerous structures of the DIENCEPHALON; MESENCEPHALON; and LIMBIC SYSTEM as well as cortical afferents of visual, auditory, and somatic origin. Anterior Prefrontal Cortex,Brodmann Area 10,Brodmann Area 11,Brodmann Area 12,Brodmann Area 47,Brodmann's Area 10,Brodmann's Area 11,Brodmann's Area 12,Brodmann's Area 47,Pars Orbitalis,Frontal Sulcus,Gyrus Frontalis Inferior,Gyrus Frontalis Superior,Gyrus Orbitalis,Gyrus Rectus,Inferior Frontal Gyrus,Lateral Orbitofrontal Cortex,Marginal Gyrus,Medial Frontal Gyrus,Olfactory Sulci,Orbital Area,Orbital Cortex,Orbital Gyri,Orbitofrontal Cortex,Orbitofrontal Gyri,Orbitofrontal Gyrus,Orbitofrontal Region,Rectal Gyrus,Rectus Gyrus,Straight Gyrus,Subcallosal Area,Superior Frontal Convolution,Superior Frontal Gyrus,Ventral Medial Prefrontal Cortex,Ventromedial Prefrontal Cortex,Anterior Prefrontal Cortices,Area 10, Brodmann,Area 10, Brodmann's,Area 11, Brodmann,Area 11, Brodmann's,Area 12, Brodmann,Area 12, Brodmann's,Area 47, Brodmann,Area 47, Brodmann's,Area, Orbital,Area, Subcallosal,Brodmanns Area 10,Brodmanns Area 11,Brodmanns Area 12,Brodmanns Area 47,Convolution, Superior Frontal,Convolutions, Superior Frontal,Cortex, Anterior Prefrontal,Cortex, Lateral Orbitofrontal,Cortex, Orbital,Cortex, Orbitofrontal,Cortex, Prefrontal,Cortex, Ventromedial Prefrontal,Cortices, Ventromedial Prefrontal,Frontal Convolution, Superior,Frontal Gyrus, Inferior,Frontal Gyrus, Medial,Frontal Gyrus, Superior,Frontalis Superior, Gyrus,Gyrus, Inferior Frontal,Gyrus, Marginal,Gyrus, Medial Frontal,Gyrus, Orbital,Gyrus, Orbitofrontal,Gyrus, Rectal,Gyrus, Rectus,Gyrus, Straight,Gyrus, Superior Frontal,Inferior, Gyrus Frontalis,Lateral Orbitofrontal Cortices,Olfactory Sulcus,Orbital Areas,Orbital Cortices,Orbital Gyrus,Orbitalis, Pars,Orbitofrontal Cortex, Lateral,Orbitofrontal Cortices,Orbitofrontal Cortices, Lateral,Orbitofrontal Regions,Prefrontal Cortex, Anterior,Prefrontal Cortex, Ventromedial,Prefrontal Cortices, Anterior,Region, Orbitofrontal,Subcallosal Areas,Sulcus, Frontal,Superior Frontal Convolutions,Superior, Gyrus Frontalis,Ventromedial Prefrontal Cortices
D017966 Pyramidal Cells Projection neurons in the CEREBRAL CORTEX and the HIPPOCAMPUS. Pyramidal cells have a pyramid-shaped soma with the apex and an apical dendrite pointed toward the pial surface and other dendrites and an axon emerging from the base. The axons may have local collaterals but also project outside their cortical region. Pyramidal Neurons,Cell, Pyramidal,Cells, Pyramidal,Neuron, Pyramidal,Neurons, Pyramidal,Pyramidal Cell,Pyramidal Neuron

Related Publications

A V Zaitsev, and N V Povysheva, and G Gonzalez-Burgos, and D A Lewis
December 2007, Neuroscience,
A V Zaitsev, and N V Povysheva, and G Gonzalez-Burgos, and D A Lewis
November 2007, Journal of neurophysiology,
A V Zaitsev, and N V Povysheva, and G Gonzalez-Burgos, and D A Lewis
August 2015, Cerebral cortex (New York, N.Y. : 1991),
A V Zaitsev, and N V Povysheva, and G Gonzalez-Burgos, and D A Lewis
September 2015, eLife,
A V Zaitsev, and N V Povysheva, and G Gonzalez-Burgos, and D A Lewis
June 2012, Neuroscience letters,
A V Zaitsev, and N V Povysheva, and G Gonzalez-Burgos, and D A Lewis
June 2015, Cerebral cortex (New York, N.Y. : 1991),
A V Zaitsev, and N V Povysheva, and G Gonzalez-Burgos, and D A Lewis
May 2021, International journal of molecular sciences,
A V Zaitsev, and N V Povysheva, and G Gonzalez-Burgos, and D A Lewis
May 2018, Brain structure & function,
Copied contents to your clipboard!