Patterns of histone acetylation. 1990

A W Thorne, and D Kmiciek, and K Mitchelson, and P Sautiere, and C Crane-Robinson
Biophysics Laboratories, Portsmouth Polytechnic, England.

The N-terminal domains of all four core histones are subject to reversible acetylation at certain lysine residues. This modification has been functionally linked to transcription, histone deposition at replication and to histone removal during spermatogenesis. To increase understanding of the significance of this modification we have studied the specificity of site utilisation in the monoacetyl, diacetyl and triacetyl forms of histones H3, H4 and H2B (histone H2A has only a single modification site), using pig thymus and HeLa cells as the source of histones. The HeLa histones were extracted from cells grown both with and without butyrate treatment. It is found that for histone H3 there is a fairly strict order of site occupancy: Lys14, followed by Lys23, followed by Lys18 in both pig and HeLa histones. Since the order and specificity is the same when butyrate is added to the HeLa cell cultures, we conclude that addition of the fatty acid does not scramble the specificity of site utilisation, but merely allows more of the natural forms of modified histone to accumulate. For histone H4, the monoacetyl form is exclusively modified at Lys16, but further addition of acetyl groups is less specific and progresses through sites 12, 8 and 5 in an N-terminal direction. Similar results were obtained for H4 from both pig thymus and butyrate-treated HeLa cells. Histone H2B could be studied in detail only from butyrate-treated HeLa cells and a much lower level of site specificity was found: sites 12 and 15 were preferred to the more N- and C-terminal sites at Lys5 and Lys20. The data reinforces the view that lysine acetylation in core histones is a very specific phenomenon that plays several functionally distinct roles. The high degree of site specificity makes it unlikely that the structural effects of acetylation are mediated merely by a generalised reduction of charge in the histone N-terminal domains.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

A W Thorne, and D Kmiciek, and K Mitchelson, and P Sautiere, and C Crane-Robinson
January 2021, Nature communications,
A W Thorne, and D Kmiciek, and K Mitchelson, and P Sautiere, and C Crane-Robinson
June 2004, Cell,
A W Thorne, and D Kmiciek, and K Mitchelson, and P Sautiere, and C Crane-Robinson
September 2001, BioEssays : news and reviews in molecular, cellular and developmental biology,
A W Thorne, and D Kmiciek, and K Mitchelson, and P Sautiere, and C Crane-Robinson
January 2011, Journal of inflammation (London, England),
A W Thorne, and D Kmiciek, and K Mitchelson, and P Sautiere, and C Crane-Robinson
January 1985, Postepy biochemii,
A W Thorne, and D Kmiciek, and K Mitchelson, and P Sautiere, and C Crane-Robinson
January 2016, Cell systems,
A W Thorne, and D Kmiciek, and K Mitchelson, and P Sautiere, and C Crane-Robinson
March 1983, Biochemistry,
A W Thorne, and D Kmiciek, and K Mitchelson, and P Sautiere, and C Crane-Robinson
January 2002, Molecular biotechnology,
A W Thorne, and D Kmiciek, and K Mitchelson, and P Sautiere, and C Crane-Robinson
July 1984, European journal of biochemistry,
A W Thorne, and D Kmiciek, and K Mitchelson, and P Sautiere, and C Crane-Robinson
December 2021, Reproduction, fertility, and development,
Copied contents to your clipboard!