SV40 recombinants carrying rabbit beta-globin gene coding sequences. 1979

D H Hamer, and K D Smith, and S H Boyer, and P Leder

We have constructed and propagated two SV40 recombinants in which different portions of the viral late gene region are replaced by a rabbit beta-globin coding sequence derived from a cloned cDNA (Maniatis et al., 1976). One of these recombinants, which retains the promoter, leader and intervening sequences for a viral late mRNA, directs the synthesis of a stable SV40-globin hybrid transcript. Using a sensitive radioimmunoassay, we have shown that this globin RNA is translated in infected monkey cells. A second recombinant, which retains the late region promoter but lacks the RNA splicing region, produces neither a stable globin transcript nor any detectable beta-globin. These experiments indicate that some sequence within a 500 bp SV40 segment, presumably the splicing region, is required for the accumulation of stable mRNA. They also demonstrate how hybrid transducing viruses can be used both to characterize viral regulatory sequences and to produce new gene products in cultured cells.

UI MeSH Term Description Entries
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005914 Globins A superfamily of proteins containing the globin fold which is composed of 6-8 alpha helices arranged in a characterstic HEME enclosing structure. Globin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000882 Haplorhini A suborder of PRIMATES consisting of six families: CEBIDAE (some New World monkeys), ATELIDAE (some New World monkeys), CERCOPITHECIDAE (Old World monkeys), HYLOBATIDAE (gibbons and siamangs), CALLITRICHINAE (marmosets and tamarins), and HOMINIDAE (humans and great apes). Anthropoidea,Monkeys,Anthropoids,Monkey
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

D H Hamer, and K D Smith, and S H Boyer, and P Leder
December 1981, Cell,
D H Hamer, and K D Smith, and S H Boyer, and P Leder
July 1984, Molecular biology and evolution,
D H Hamer, and K D Smith, and S H Boyer, and P Leder
January 1978, Cold Spring Harbor symposia on quantitative biology,
D H Hamer, and K D Smith, and S H Boyer, and P Leder
January 1981, Journal of molecular and applied genetics,
D H Hamer, and K D Smith, and S H Boyer, and P Leder
July 1980, Journal of molecular biology,
D H Hamer, and K D Smith, and S H Boyer, and P Leder
January 1982, Nature,
D H Hamer, and K D Smith, and S H Boyer, and P Leder
January 1977, Science (New York, N.Y.),
D H Hamer, and K D Smith, and S H Boyer, and P Leder
December 1977, Cell,
Copied contents to your clipboard!