The role of myeloperoxidase in the microbicidal activity of polymorphonuclear leukocytes. 1978

S J Klebanoff, and H Rosen

Myeloperoxidase (MPO), H2O2 and a halide form a powerful antimicrobial system effective against bacteria, fungi, viruses and mammalian cells. After phagocytosis, MPO is released into the phagosome from adjacent granules where it interacts with H2O2 generated either by leukocytic or microbial metabolism and a halide such as chloride or iodide to form agents toxic to the ingested organisms. Evidence for H2O2 and MPO participation in the microbicidal activity of polymorphonuclear leukocytes (PMNs) has been obtained from patients with neutrophil dysfunction. In chronic granulomatous disease, PMNs have a microbicidal defect associated with the absence of the respiratory burst. The importance of H2O2 deficiency in the PMN dysfunction is emphasized by its reversal by H2O2. PMNs which lack MPO also have a major fungicidal and bactericidal defect. Bactericidal activity is particularly low during the early postphagocytic period, after which the organisms are killed. Although emphasizing the importance of MPO-mediated antimicrobial systems particularly during the early postphagocytic period, these findings also indicate the presence of MPO-independent systems which develop slowly but are ultimately effective. The MPO-independent antimicrobial systems may be oxygen-dependent or oxygen-independent. The acetaldehyde-xanthine oxidase system has been used as a model of the MPO-independent, oxygen-dependent antimicrobial systems of the PMN. A microbicidal effect by this system was observed which was inhibited by superoxide dismutase, catalase and scavengers of hydroxyl radicals (OH') and singlet oxygen (1O2). The microbicidal activity of acetaldehyde and xanthine oxidase is increased considerably by MPO and chloride. The formation of ethylene from methional or 2-oxo-4-methylthiobutyric acid by PMNs has been regarded as evidence for OH' formation. We have found ethylene formation to be largely dependent on MPO and evidence for the initiation of ethylene formation by 1O2 has been obtained. Both the xanthine oxidase system and the MPO-H2O2-halide system convert diphenylfuran into cis-dibenzoylethylene, an effect which is compatible with, although not proof of, the formation of 1O2 by these systems.

UI MeSH Term Description Entries
D009195 Peroxidase A hemeprotein from leukocytes. Deficiency of this enzyme leads to a hereditary disorder coupled with disseminated moniliasis. It catalyzes the conversion of a donor and peroxide to an oxidized donor and water. EC 1.11.1.7. Myeloperoxidase,Hemi-Myeloperoxidase,Hemi Myeloperoxidase
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010544 Peroxidases Ovoperoxidase
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D001770 Blood Bactericidal Activity The natural bactericidal property of BLOOD due to normally occurring antibacterial substances such as beta lysin, leukin, etc. This activity needs to be distinguished from the bactericidal activity contained in a patient's serum as a result of antimicrobial therapy, which is measured by a SERUM BACTERICIDAL TEST. Activities, Blood Bactericidal,Activity, Blood Bactericidal,Bactericidal Activities, Blood,Bactericidal Activity, Blood,Blood Bactericidal Activities
D005030 Ethylenes Derivatives of ethylene, a simple organic gas of biological origin with many industrial and biological use.
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

S J Klebanoff, and H Rosen
September 1970, Science (New York, N.Y.),
S J Klebanoff, and H Rosen
January 1984, Archivos de investigacion medica,
S J Klebanoff, and H Rosen
February 1983, Infection and immunity,
S J Klebanoff, and H Rosen
January 1987, Archives of dermatological research,
S J Klebanoff, and H Rosen
January 1983, Advances in experimental medicine and biology,
S J Klebanoff, and H Rosen
January 1984, Archivos de investigacion medica,
S J Klebanoff, and H Rosen
January 1984, Archivos de investigacion medica,
S J Klebanoff, and H Rosen
July 1983, Analytical biochemistry,
Copied contents to your clipboard!