Regulation of primate testicular luteinizing hormone receptors and steroidogenesis. 1979

T F Davies, and G D Hodgen, and M L Dufau, and K J Catt

The testicular luteinizing hormone (LH) receptors of the rhesus monkey and human have many features in common, including high equilibrium association constant, marked species specificity, and relatively low binding capacity. We have, therefore, used rhesus monkeys as models for human LH-receptor regulation in vivo during gonadotropin treatment. In four adult male monkeys, treated with 10,000 IU human chorionic gonadotropin (hCG), serum and testicular steroidogenic responses were monitored at 24-h intervals during the following 4 d, and LH-receptor concentrations were measured by (125)I-hCG binding to 15,000-g particles prepared from testis biopsy specimens. In treated animals, serum hCG was maximal on day 1 at 322+/-16 ng/ml and declined to 24.4+/-2.3 ng/ml by day 4. Serum testosterone was increased threefold during the subsequent 4 d (from 6.5+/-2.0 to 18.6+/-4.4 ng/ml) but serum progesterone remained unchanged. In contrast, serum 17alpha-hydroxyprogesterone increased 12-fold to 5.5+/-0.5 ng/ml at day 1 and was increased fourfold during the subsequent 3 d. The LH-receptor binding capacity of the primate testis was reduced by 18.3+/-6.0% on day 1, 51.7+/-7.4% on day 2, and 45.3+/-2.4% on day 4. Occupancy of the LH receptors by endogenously bound hCG was significant on day 1 but was negligible by day 4. These data demonstrate that gonadotropin-induced LH-receptor depletion occurs in the rhesus testis and indicate that primate gonadotropin receptors are susceptible to the regulatory processes recently described in the rat. In addition, the simultaneous and disproportionate accumulation of 17alpha-hydroxyprogesterone indicates that 17,20-desmolase was rate-limiting under these conditions in the primate testis Leydig cell.

UI MeSH Term Description Entries
D007985 Leydig Cells Steroid-producing cells in the interstitial tissue of the TESTIS. They are under the regulation of PITUITARY HORMONES; LUTEINIZING HORMONE; or interstitial cell-stimulating hormone. TESTOSTERONE is the major androgen (ANDROGENS) produced. Interstitial Cells, Testicular,Leydig Cell,Testicular Interstitial Cell,Testicular Interstitial Cells,Cell, Leydig,Cell, Testicular Interstitial,Cells, Leydig,Cells, Testicular Interstitial,Interstitial Cell, Testicular
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D008251 Macaca A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of 16 species inhabiting forests of Africa, Asia, and the islands of Borneo, Philippines, and Celebes. Ape, Barbary,Ape, Black,Ape, Celebes,Barbary Ape,Black Ape,Celebes Ape,Macaque,Apes, Barbary,Apes, Black,Apes, Celebes,Barbary Apes,Black Apes,Celebes Apes,Macacas,Macaques
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008297 Male Males
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D006063 Chorionic Gonadotropin A gonadotropic glycoprotein hormone produced primarily by the PLACENTA. Similar to the pituitary LUTEINIZING HORMONE in structure and function, chorionic gonadotropin is involved in maintaining the CORPUS LUTEUM during pregnancy. CG consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is virtually identical to the alpha subunits of the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity (CHORIONIC GONADOTROPIN, BETA SUBUNIT, HUMAN). Chorionic Gonadotropin, Human,HCG (Human Chorionic Gonadotropin),Biogonadil,Choriogonadotropin,Choriogonin,Chorulon,Gonabion,Human Chorionic Gonadotropin,Pregnyl,Gonadotropin, Chorionic,Gonadotropin, Human Chorionic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000882 Haplorhini A suborder of PRIMATES consisting of six families: CEBIDAE (some New World monkeys), ATELIDAE (some New World monkeys), CERCOPITHECIDAE (Old World monkeys), HYLOBATIDAE (gibbons and siamangs), CALLITRICHINAE (marmosets and tamarins), and HOMINIDAE (humans and great apes). Anthropoidea,Monkeys,Anthropoids,Monkey

Related Publications

T F Davies, and G D Hodgen, and M L Dufau, and K J Catt
May 1981, Endocrinology,
T F Davies, and G D Hodgen, and M L Dufau, and K J Catt
January 1981, Endocrinology,
T F Davies, and G D Hodgen, and M L Dufau, and K J Catt
August 1981, Endocrinology,
T F Davies, and G D Hodgen, and M L Dufau, and K J Catt
June 1978, The Journal of biological chemistry,
T F Davies, and G D Hodgen, and M L Dufau, and K J Catt
February 1984, Endocrinology,
T F Davies, and G D Hodgen, and M L Dufau, and K J Catt
June 1981, Endocrinology,
T F Davies, and G D Hodgen, and M L Dufau, and K J Catt
October 1976, Biochemical and biophysical research communications,
T F Davies, and G D Hodgen, and M L Dufau, and K J Catt
August 1978, Endocrinology,
T F Davies, and G D Hodgen, and M L Dufau, and K J Catt
January 1980, Recent progress in hormone research,
T F Davies, and G D Hodgen, and M L Dufau, and K J Catt
March 1981, Biology of reproduction,
Copied contents to your clipboard!