Selective isolation of mutants of vesicular stomatitis virus defective in production of the viral glycoprotein. 1979

H F Lodish, and R A Weiss

We describe a procedure that enriches for temperature-sensitive (ts) mutants of vesicular stomatitis virus (VSV), Indiana serotype, which are conditionally defective in the biosynthesis of the viral glycoprotein. The selection procedure depends on the rescue of pseudotypes of known ts VSV mutants in complementation group V (corresponding to the viral G protein) by growth at 39.5 degrees C in cells preinfected with the avian retrovirus Rous-associated virus 1 (RAV-1). Seventeen nonleaky ts mutants were isolated from mutagenized stocks of VSV. Eight induced no synthesis of VSV proteins at the nonpermissive temperature and hence were not studied further. Four mutants belonged to complementation group V and resembled other ts (V) mutations in their thermolability, production at 39.5 degrees C of noninfectious particles specifically deficient in VSV G protein, synthesis at 39.5 degrees C of normal levels of viral RNA and protein, and ability to be rescued at 39.5 degrees C by preinfection of cells by avian retroviruses. Five new ts mutants were, unexpectedly, in complementation group IV, the putative structural gene for the viral nucleocapsid (N) protein. At 39.5 degrees C these mutants also induced formation of noninfectious particles relatively deficient in G protein, and production of infectious virus at 39.5 degrees C was also enhanced by preinfection with RAV-1, although not to the same extent as in the case of the group V mutants. We believe that the primary effect of the ts mutation is a reduced synthesis of the nucleocapsid and thus an inhibition of synthesis of all viral proteins; apparently, the accumulation of G protein at the surface is not sufficient to envelope all the viral nucleocapsids, or the mutation in the nucleocapsid prevents proper assembly of G into virions. The selection procedure, based on pseudotype formation with glycoproteins encoded by an unrelated virus, has potential use for the isolation of new glycoprotein mutants of diverse groups of enveloped viruses.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011784 Quail Common name for two distinct groups of BIRDS in the order GALLIFORMES: the New World or American quails of the family Odontophoridae and the Old World quails in the genus COTURNIX, family Phasianidae. Quails
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006378 Helper Viruses Viruses which enable defective viruses to replicate or to form a protein coat by complementing the missing gene function of the defective (satellite) virus. Helper and satellite may be of the same or different genus. Helper Virus,Virus, Helper,Viruses, Helper
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001354 Avian Leukosis Virus The type species of ALPHARETROVIRUS producing latent or manifest lymphoid leukosis in fowl. Leukosis Virus, Avian,Lymphomatosis Virus, Avian,Rous-Associated Virus,Avian Leukosis Viruses,Avian Lymphomatosis Virus,Avian Lymphomatosis Viruses,Leukosis Viruses, Avian,Lymphomatosis Viruses, Avian,Rous Associated Virus,Virus, Avian Leukosis,Virus, Avian Lymphomatosis,Virus, Rous-Associated,Viruses, Avian Leukosis,Viruses, Avian Lymphomatosis
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014721 Vesicular stomatitis Indiana virus The type species of VESICULOVIRUS causing a disease symptomatically similar to FOOT-AND-MOUTH DISEASE in cattle, horses, and pigs. It may be transmitted to other species including humans, where it causes influenza-like symptoms. Vesicular stomatitis-Indiana virus

Related Publications

H F Lodish, and R A Weiss
October 1990, Journal of virology,
H F Lodish, and R A Weiss
December 1982, Proceedings of the National Academy of Sciences of the United States of America,
H F Lodish, and R A Weiss
January 1974, Journal of molecular biology,
H F Lodish, and R A Weiss
April 1974, The Journal of infectious diseases,
H F Lodish, and R A Weiss
September 1969, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
Copied contents to your clipboard!