Selective radiosensitization of human cervical cancer cells and normal cells by artemisinin through the abrogation of radiation-induced G2 block. 2012

Xiao-mei Gong, and Qing Zhang, and Artour Torossian, and Jian-ping Cao, and Shen Fu
Department of Radiation Oncology, Shanghai Pulmonary Hospital of TongJi University, School of Medicine, Shanghai, China.

OBJECTIVE Artemisinin has been shown to inhibit the growth of some human cancer cells. In this study, we investigated the radiosensitizing effects of artemisinin on cervical cancer cells and normal human fibroblast cells and also assessed some possible mechanisms for these effects. METHODS Two cervical cancer cell lines, HeLa and SiHa cells, and GM0639 normal human fibroblast cell line were treated with various concentrations of artemisinin plus radiation; the cell viability was tested using both 3-(4,5-dimethylthiazolyl-2-y1)-2, 5-diphenyltetrazolium bromide and clonogenic assays. Radiation dose-modifying factors were measured by clonogenic survival assay. Annexin V/propidium iodide assay for the evaluation of apoptosis and cell cycle phase were determined by flow cytometry, and the expression of the cell cycle-associated proteins Wee 1 and cyclin B1 were analyzed by Western blot analysis. RESULTS Artemisinin showed higher cytotoxicity in cervical cancer cell lines, especially in SiHa cells, than in the normal cell line. In both clonogenic assay and apoptosis, artemisinin sensitized the HeLa cancer cells to the cytotoxicity of radiation, yielding a dose-modifying factor of 1.24, but not SiHa cancer cells and GM normal cells. At a dose of 110 nmol/L, artemisinin did not change the distribution of cell cycle in 3 tested cell lines, but artemisinin abrogated the radiation-induced G2 blockade. Analyses of G2-checkpoint-related proteins, the activation of Wee 1 and depression of cyclin B1 expression induced by radiation, could be restored to the control level by artemisinin. CONCLUSIONS Given the unique cytotoxic profile of artemisinin on cancer cells and normal cells, artemisinin may be a potentially promising radiosensitizer through the regulation of the expression of G2 checkpoint-related proteins like Wee 1 and cyclin B1, and improve therapeutic ratios for the combination of artemisinin and ionizing irradiation in the treatment of patients with cervical cancer.

UI MeSH Term Description Entries
D011836 Radiation Tolerance The ability of some cells or tissues to survive lethal doses of IONIZING RADIATION. Tolerance depends on the species, cell type, and physical and chemical variables, including RADIATION-PROTECTIVE AGENTS and RADIATION-SENSITIZING AGENTS. Radiation Sensitivity,Radiosensitivity,Sensitivity, Radiation,Tolerance, Radiation,Radiation Sensitivities,Radiation Tolerances,Radiosensitivities,Sensitivities, Radiation,Tolerances, Radiation
D011838 Radiation-Sensitizing Agents Drugs used to potentiate the effectiveness of radiation therapy in destroying unwanted cells. Radiation Sensitizer,Radiosensitizing Agent,Radiosensitizing Agents,Agents, Radiation-Sensitizing,Radiation Sensitizers,Radiation Sensitizing Agents,Radiation-Sensitizing Drugs,Radiation-Sensitizing Effect,Radiation-Sensitizing Effects,Radiosensitizing Drugs,Radiosensitizing Effect,Radiosensitizing Effects,Agent, Radiosensitizing,Agents, Radiation Sensitizing,Agents, Radiosensitizing,Drugs, Radiation-Sensitizing,Drugs, Radiosensitizing,Effect, Radiation-Sensitizing,Effect, Radiosensitizing,Effects, Radiation-Sensitizing,Effects, Radiosensitizing,Radiation Sensitizing Drugs,Radiation Sensitizing Effect,Radiation Sensitizing Effects,Sensitizer, Radiation,Sensitizers, Radiation,Sensitizing Agents, Radiation
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002583 Uterine Cervical Neoplasms Tumors or cancer of the UTERINE CERVIX. Cancer of Cervix,Cancer of the Cervix,Cancer of the Uterine Cervix,Cervical Cancer,Cervical Neoplasms,Cervix Cancer,Cervix Neoplasms,Neoplasms, Cervical,Neoplasms, Cervix,Uterine Cervical Cancer,Cancer, Cervical,Cancer, Cervix,Cancer, Uterine Cervical,Cervical Cancer, Uterine,Cervical Cancers,Cervical Neoplasm,Cervical Neoplasm, Uterine,Cervix Neoplasm,Neoplasm, Cervix,Neoplasm, Uterine Cervical,Uterine Cervical Cancers,Uterine Cervical Neoplasm
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D005260 Female Females
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000890 Anti-Infective Agents Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection. Anti-Infective Agent,Anti-Microbial Agent,Antimicrobial Agent,Microbicide,Microbicides,Anti-Microbial Agents,Antiinfective Agents,Antimicrobial Agents,Agent, Anti-Infective,Agent, Anti-Microbial,Agent, Antimicrobial,Agents, Anti-Infective,Agents, Anti-Microbial,Agents, Antiinfective,Agents, Antimicrobial,Anti Infective Agent,Anti Infective Agents,Anti Microbial Agent,Anti Microbial Agents

Related Publications

Xiao-mei Gong, and Qing Zhang, and Artour Torossian, and Jian-ping Cao, and Shen Fu
January 2003, Ai zheng = Aizheng = Chinese journal of cancer,
Xiao-mei Gong, and Qing Zhang, and Artour Torossian, and Jian-ping Cao, and Shen Fu
April 1998, Cell proliferation,
Xiao-mei Gong, and Qing Zhang, and Artour Torossian, and Jian-ping Cao, and Shen Fu
January 2021, Frontiers in public health,
Xiao-mei Gong, and Qing Zhang, and Artour Torossian, and Jian-ping Cao, and Shen Fu
August 2003, International journal of radiation biology,
Xiao-mei Gong, and Qing Zhang, and Artour Torossian, and Jian-ping Cao, and Shen Fu
November 2014, Reproductive sciences (Thousand Oaks, Calif.),
Xiao-mei Gong, and Qing Zhang, and Artour Torossian, and Jian-ping Cao, and Shen Fu
January 2000, Oncology research,
Xiao-mei Gong, and Qing Zhang, and Artour Torossian, and Jian-ping Cao, and Shen Fu
April 1998, Radiation research,
Xiao-mei Gong, and Qing Zhang, and Artour Torossian, and Jian-ping Cao, and Shen Fu
March 2013, International journal of oncology,
Xiao-mei Gong, and Qing Zhang, and Artour Torossian, and Jian-ping Cao, and Shen Fu
March 2008, Cancer chemotherapy and pharmacology,
Xiao-mei Gong, and Qing Zhang, and Artour Torossian, and Jian-ping Cao, and Shen Fu
October 1991, Cancer research,
Copied contents to your clipboard!