Efficient synthesis of exo-N-carbamoyl nucleosides: application to the synthesis of phosphoramidate prodrugs. 2012

Jong Hyun Cho, and Steven J Coats, and Raymond F Schinazi
Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , and Veterans Affairs Medical Center, Decatur, Georgia 30033, United States, and RFS Pharma, LLC , 1860 Montreal Road, Tucker, Georgia 30084, United States.

An efficient protection protocol for the 6-exo-amino group of purine nucleosides with various chloroformates was developed utilizing N-methylimidazole (NMI). The reaction of an exo-N(6)-group of adenosine analogue 1 with alkyl/and aryl chloroformates under optimized conditions provided the N(6)-carbamoyl adenosines (2a-j) in good to excellent yields. The reaction of N(6)-Cbz-protected nucleosides (5a-c) with phenyl phosphoryl chloride (7) using t-BuMgCl followed by catalytic hydrogenation afforded the corresponding phosphoramidate pronucleotides (8a-c) in excellent yield.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D010756 Phosphoric Acids Inorganic derivatives of phosphoric acid (H3PO4). Note that organic derivatives of phosphoric acids are listed under ORGANOPHOSPHATES. Pyrophosphoric Acids,Acids, Phosphoric,Acids, Pyrophosphoric
D011355 Prodrugs A compound that, on administration, must undergo chemical conversion by metabolic processes before becoming the pharmacologically active drug for which it is a prodrug. Drug Precursor,Drug Precursors,Pro-Drug,Prodrug,Pro-Drugs,Precursor, Drug,Precursors, Drug,Pro Drug,Pro Drugs
D011684 Purine Nucleosides Purines with a RIBOSE attached that can be phosphorylated to PURINE NUCLEOTIDES. Purine Nucleoside,Nucleoside, Purine,Nucleosides, Purine
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine
D000577 Amides Organic compounds containing the -CO-NH2 radical. Amides are derived from acids by replacement of -OH by -NH2 or from ammonia by the replacement of H by an acyl group. (From Grant & Hackh's Chemical Dictionary, 5th ed) Amide
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D020650 Combinatorial Chemistry Techniques A technology, in which sets of reactions for solution or solid-phase synthesis, is used to create molecular libraries for analysis of compounds on a large scale. Chemistry Techniques, Combinatorial,Techniques, Combinatorial Chemistry,Chemistry Technic, Combinatorial,Chemistry Technics, Combinatorial,Chemistry Technique, Combinatorial,Combinatorial Chemistry Technic,Combinatorial Chemistry Technics,Combinatorial Chemistry Technique,Technic, Combinatorial Chemistry,Technics, Combinatorial Chemistry,Technique, Combinatorial Chemistry

Related Publications

Jong Hyun Cho, and Steven J Coats, and Raymond F Schinazi
June 2013, Current protocols in nucleic acid chemistry,
Jong Hyun Cho, and Steven J Coats, and Raymond F Schinazi
January 2006, Molecular pharmaceutics,
Jong Hyun Cho, and Steven J Coats, and Raymond F Schinazi
October 1998, Acta chemica Scandinavica (Copenhagen, Denmark : 1989),
Jong Hyun Cho, and Steven J Coats, and Raymond F Schinazi
December 2001, Journal of medicinal chemistry,
Jong Hyun Cho, and Steven J Coats, and Raymond F Schinazi
August 2002, Journal of medicinal chemistry,
Jong Hyun Cho, and Steven J Coats, and Raymond F Schinazi
January 2016, Organic & biomolecular chemistry,
Jong Hyun Cho, and Steven J Coats, and Raymond F Schinazi
December 2017, Bioorganic & medicinal chemistry letters,
Jong Hyun Cho, and Steven J Coats, and Raymond F Schinazi
February 2019, MedChemComm,
Jong Hyun Cho, and Steven J Coats, and Raymond F Schinazi
December 2011, Bioorganic & medicinal chemistry letters,
Jong Hyun Cho, and Steven J Coats, and Raymond F Schinazi
November 2000, Journal of medicinal chemistry,
Copied contents to your clipboard!