Cyclosporine immunosuppression does not prevent the production of donor-specific antibody capable of mediating allograft vasculopathy. 2012

Alison J Gareau, and Bjorn Nashan, and Gregory M Hirsch, and Timothy D G Lee
Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.

BACKGROUND Late cardiac graft rejection, primarily mediated by allograft vasculopathy (AV), remains a major limitation to cardiac transplantation, even in the face of significant calcineurin inhibitor (CNI) immunosuppression. The role played by alloantibody in AV is unclear. Evidence that CNI immunosuppression suppresses CD4(+) T-cell function would suggest that antibody production and effector function would be severely limited in CNI-treated patients. In this study we examine the capacity of CNI-treated animals to develop effective alloantibody that can mediate AV. METHODS Wild-type (WT) B6 mice were alloimmunized using donor splenocytes or a fully major histocompatibility complex-mismatched allogeneic abdominal aortic graft in the presence of CNI immunosuppression (30 or 50 mg/kg/day cyclosporine A). Anti-serum was harvested and tested using complement-dependent in vitro cytotoxicity assays. Anti-serum was passively transferred to immunodeficient RAG1(-/-) recipients of allogeneic grafts. C4d deposition was quantified in the allografts from WT recipients. RESULTS CNI immunosuppression did not prevent the development of alloantibody in response to either immunization method (p < 0.05). Passive transfer of anti-serum generated AV lesions in immunodeficient graft recipients and mediated complement-dependent destruction of donor cells (p < 0.05). C4d deposition was localized to the media of grafts of CNI treated animals. CONCLUSIONS CNI therapy does not prevent the production of alloantibody with the capacity to mediate AV. C4d deposition in the media suggests a role for medial smooth muscle cell loss in antibody-mediated AV lesion development in our model.

UI MeSH Term Description Entries
D007166 Immunosuppressive Agents Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging. Immunosuppressant,Immunosuppressive Agent,Immunosuppressants,Agent, Immunosuppressive,Agents, Immunosuppressive
D007518 Isoantibodies Antibodies from an individual that react with ISOANTIGENS of another individual of the same species. Alloantibodies
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D006084 Graft Rejection An immune response with both cellular and humoral components, directed against an allogeneic transplant, whose tissue antigens are not compatible with those of the recipient. Transplant Rejection,Rejection, Transplant,Transplantation Rejection,Graft Rejections,Rejection, Graft,Rejection, Transplantation,Rejections, Graft,Rejections, Transplant,Rejections, Transplantation,Transplant Rejections,Transplantation Rejections
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000918 Antibody Specificity The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site. Antibody Specificities,Specificities, Antibody,Specificity, Antibody
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D014019 Tissue Donors Individuals supplying living tissue, organs, cells, blood or blood components for transfer or transplantation to histocompatible recipients. Organ Donors,Donors,Ovum Donors,Semen Donors,Transplant Donors,Donor,Donor, Organ,Donor, Ovum,Donor, Semen,Donor, Tissue,Donor, Transplant,Donors, Organ,Donors, Ovum,Donors, Semen,Donors, Tissue,Donors, Transplant,Organ Donor,Ovum Donor,Semen Donor,Tissue Donor,Transplant Donor

Related Publications

Alison J Gareau, and Bjorn Nashan, and Gregory M Hirsch, and Timothy D G Lee
December 2021, Clinical transplantation,
Alison J Gareau, and Bjorn Nashan, and Gregory M Hirsch, and Timothy D G Lee
March 1987, Transplantation,
Alison J Gareau, and Bjorn Nashan, and Gregory M Hirsch, and Timothy D G Lee
June 1997, Transplantation,
Alison J Gareau, and Bjorn Nashan, and Gregory M Hirsch, and Timothy D G Lee
June 1995, Transplantation proceedings,
Alison J Gareau, and Bjorn Nashan, and Gregory M Hirsch, and Timothy D G Lee
May 2018, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons,
Alison J Gareau, and Bjorn Nashan, and Gregory M Hirsch, and Timothy D G Lee
April 2021, The American journal of sports medicine,
Alison J Gareau, and Bjorn Nashan, and Gregory M Hirsch, and Timothy D G Lee
December 1992, Transplantation proceedings,
Alison J Gareau, and Bjorn Nashan, and Gregory M Hirsch, and Timothy D G Lee
October 1992, Annals of surgery,
Alison J Gareau, and Bjorn Nashan, and Gregory M Hirsch, and Timothy D G Lee
July 1995, Circulation,
Alison J Gareau, and Bjorn Nashan, and Gregory M Hirsch, and Timothy D G Lee
February 1988, Transplantation,
Copied contents to your clipboard!