Characterization of the immune responses elicited by baculovirus-based vector vaccines against influenza virus hemagglutinin. 2012

Zhi-peng Hu, and Juan Yin, and Yuan-yuan Zhang, and Shu-ya Jia, and Zuo-jia Chen, and Jiang Zhong
Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China.

OBJECTIVE To compare the specific immune responses elicited by different baculovirus vectors in immunized mice. METHODS We constructed and characterized two recombinant baculoviruses carrying the expression cassette for the H5N1 influenza virus hemagglutinin (HA) gene driven by either an insect cell promoter (vAc-HA) or a dual-promoter active both in insect and mammalian cells (vAc-HA-DUAL). Virus without the HA gene (vAc-EGFP) was used as a control. These viruses were used to immunize mice subcutaneously and intraperitoneally. The production of total and specific antibodies was determined by ELISA and competitive ELISA. Cytokine production by the spleen cells of immunized mice was studied using the ELISPOT assay. RESULTS Both the vAc-HA and vAc-HA-DUAL vectors expressed HA proteins in insect Sf9 cells, and HA antigen was present in progeny virions. The vAc-HA-DUAL vector also mediated HA expression in virus-transduced mammalian cell lines (BHK and A547). Both vAc-HA and vAc-HA-DUAL exhibited higher transduction efficiencies than vAc-EGFP in mammalian cells, as shown by the expression of the reporter gene egfp. Additionally, both vAc-HA and vAc-HA-DUAL induced high levels of HA-specific antibody production in immunized mice; vAc-HA-DUAL was more efficient in inducing IFN-γ and IL-2 upon stimulation with specific antigen, whereas vAc-HA was more efficient in inducing IL-4 and IL-6. CONCLUSIONS Baculovirus vectors elicited efficient, specific immune responses in immunized mice. The vector displaying the HA antigen on the virion surface (vAc-HA) elicited a Th2-biased immune response, whereas the vector displaying HA and mediating HA expression in the cell (vAc-HA-DUAL) elicited a Th1-biased immune response.

UI MeSH Term Description Entries
D007252 Influenza Vaccines Vaccines used to prevent infection by viruses in the family ORTHOMYXOVIRIDAE. It includes both killed and attenuated vaccines. The composition of the vaccines is changed each year in response to antigenic shifts and changes in prevalence of influenza virus strains. The flu vaccines may be mono- or multi-valent, which contains one or more ALPHAINFLUENZAVIRUS and BETAINFLUENZAVIRUS strains. Flu Vaccine,Influenzavirus Vaccine,Monovalent Influenza Vaccine,Universal Flu Vaccine,Universal Influenza Vaccine,Flu Vaccines,High-Dose Trivalent Influenza Vaccine,Influenza Vaccine,Influenza Virus Vaccine,Influenza Virus Vaccines,Influenzavirus Vaccines,Intranasal Live-Attenuated Influenza Vaccine,LAIV Vaccine,Monovalent Influenza Vaccines,Quadrivalent Influenza Vaccine,Trivalent Influenza Vaccine,Trivalent Live Attenuated Influenza Vaccine,Universal Flu Vaccines,Universal Influenza Vaccines,Flu Vaccine, Universal,High Dose Trivalent Influenza Vaccine,Influenza Vaccine, Monovalent,Influenza Vaccine, Quadrivalent,Influenza Vaccine, Trivalent,Influenza Vaccine, Universal,Intranasal Live Attenuated Influenza Vaccine,Vaccine, Flu,Vaccine, Influenza,Vaccine, Influenza Virus,Vaccine, Influenzavirus,Vaccine, LAIV,Vaccine, Monovalent Influenza,Vaccine, Quadrivalent Influenza,Vaccine, Trivalent Influenza,Virus Vaccine, Influenza
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007378 Interleukins Soluble factors which stimulate growth-related activities of leukocytes as well as other cell types. They enhance cell proliferation and differentiation, DNA synthesis, secretion of other biologically active molecules and responses to immune and inflammatory stimuli. Interleukin
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D009976 Orthomyxoviridae Infections Virus diseases caused by the ORTHOMYXOVIRIDAE. Orthomyxovirus Infections,Infections, Orthomyxoviridae,Infections, Orthomyxovirus,Swine Influenza,Infection, Orthomyxoviridae,Infection, Orthomyxovirus,Influenza, Swine,Orthomyxoviridae Infection,Orthomyxovirus Infection
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005260 Female Females
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Zhi-peng Hu, and Juan Yin, and Yuan-yuan Zhang, and Shu-ya Jia, and Zuo-jia Chen, and Jiang Zhong
November 2010, Vaccine,
Zhi-peng Hu, and Juan Yin, and Yuan-yuan Zhang, and Shu-ya Jia, and Zuo-jia Chen, and Jiang Zhong
April 2021, Vaccines,
Zhi-peng Hu, and Juan Yin, and Yuan-yuan Zhang, and Shu-ya Jia, and Zuo-jia Chen, and Jiang Zhong
February 1990, Virology,
Zhi-peng Hu, and Juan Yin, and Yuan-yuan Zhang, and Shu-ya Jia, and Zuo-jia Chen, and Jiang Zhong
March 2013, Yonsei medical journal,
Zhi-peng Hu, and Juan Yin, and Yuan-yuan Zhang, and Shu-ya Jia, and Zuo-jia Chen, and Jiang Zhong
June 2011, Human immunology,
Zhi-peng Hu, and Juan Yin, and Yuan-yuan Zhang, and Shu-ya Jia, and Zuo-jia Chen, and Jiang Zhong
July 1997, Vaccine,
Zhi-peng Hu, and Juan Yin, and Yuan-yuan Zhang, and Shu-ya Jia, and Zuo-jia Chen, and Jiang Zhong
May 1999, Vaccine,
Zhi-peng Hu, and Juan Yin, and Yuan-yuan Zhang, and Shu-ya Jia, and Zuo-jia Chen, and Jiang Zhong
October 2013, Current opinion in virology,
Zhi-peng Hu, and Juan Yin, and Yuan-yuan Zhang, and Shu-ya Jia, and Zuo-jia Chen, and Jiang Zhong
January 2022, Frontiers in veterinary science,
Zhi-peng Hu, and Juan Yin, and Yuan-yuan Zhang, and Shu-ya Jia, and Zuo-jia Chen, and Jiang Zhong
October 2010, Vaccine,
Copied contents to your clipboard!