Vanadate inhibits uncoupled Ca efflux but not Na--Ca exchange in squid axons. 1979

R DiPolo, and H R Rojas, and L Beaugé

Nerve cells can maintain a very low intracellular calcium concentration ([Ca2+]i) against large Ca2+ electrochemical gradients (see ref. 1 for review). The properties of the calcium efflux from these cells depend on [Ca2+]i (ref. 2), and within the physiological range, most Ca efflux depends on ATP (which stimulates with high affinity) and is insensitive to Na1, Na0 and Ca0 (uncoupled Ca efflux). When the [Ca2+]i is well above the physiological range, Ca efflux becomes only partially dependent on ATP (acting now with low affinity), is inhibited by Nai and is stimulated by Na0 and Ca0 (Na--Ca exchange). Orthovanadate, a powerful inhibitor of the (Na+ + K+)ATPase and the Na pump, also inhibits the Ca-stimulated ATPase activity, which is the enzymatic basis for the uncoupled Ca pump, in human red cells. The experiments reported here show that in squid axons the ATP-dependent uncoupled Ca efflux can be fully and reversibly inhibited by vanadate, whereas concentrations of vanadate 10 times higher have no effect on the Na--Ca exchange. This is another indication that the uncoupled Ca efflux represents an ATP-driven Ca pump, and supports the suggestion that the uncoupled Ca efflux and Na--Ca exchange are mediated by different mechanisms.

UI MeSH Term Description Entries
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003864 Depression, Chemical The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Depression,Chemical Depressions,Depressions, Chemical
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D014639 Vanadium A metallic element with the atomic symbol V, atomic number 23, and atomic weight 50.94. It is used in the manufacture of vanadium steel. Prolonged exposure can lead to chronic intoxication caused by absorption usually via the lungs. Vanadium-51,Vanadium 51

Related Publications

R DiPolo, and H R Rojas, and L Beaugé
February 1979, Biochimica et biophysica acta,
R DiPolo, and H R Rojas, and L Beaugé
May 1994, The American journal of physiology,
R DiPolo, and H R Rojas, and L Beaugé
September 1973, Experientia,
R DiPolo, and H R Rojas, and L Beaugé
June 1976, The Journal of physiology,
R DiPolo, and H R Rojas, and L Beaugé
December 1984, The Journal of general physiology,
R DiPolo, and H R Rojas, and L Beaugé
July 1994, The American journal of physiology,
R DiPolo, and H R Rojas, and L Beaugé
January 1985, Nature,
R DiPolo, and H R Rojas, and L Beaugé
May 1987, The Journal of general physiology,
R DiPolo, and H R Rojas, and L Beaugé
April 1977, The Journal of general physiology,
Copied contents to your clipboard!