Maximizing carbon dioxide content of shell eggs by rapid cooling treatment and its effect on shell egg quality. 2012

P Banerjee, and K M Keener
Department of Food Science, Purdue University, West Lafayette, IN 47907-2009, USA.

Rapid cooling of shell eggs using liquid CO₂ has been shown to cool eggs to 7°C within minutes, as opposed to days required by traditional cooling treatments. This quick-cooling technique is component in the maintenance of egg quality and extended shelf life beyond the current 30- to 45-d period. The hypothesis for the current study was that maximizing CO₂ content of the eggs during cooling may increase Haugh units and thus extend shelf life (physical quality factors). The objective of this study was to maximize CO₂ content of shell eggs during rapid cooling with liquid CO₂ and determine its effect on egg quality during 12 wk of refrigerated storage. Three cooling conditions selected for the study were -45°C for 18 min (treatment A), -60°C for 15 min (treatment B), and -75°C for 12 min (treatment C). After rapid-cooling treatment, it took approximately 25 min for the internal temperature of eggs to equilibrate to 7°C. The Haugh units of the rapidly cooled eggs were significantly higher than the traditionally cooled (control) eggs. After 12 wk of refrigerated (5-7°C) storage, control eggs were only 37% AA-grade, 57% A-grade, and 6% B-grade. In comparison, all the rapidly cooled eggs averaged to 80% AA-grade and 20% A-grade. After 6 wk, the average quality of control eggs reduced to grade A, whereas rapid cooling treatment was able to maintain AA quality up to 12 wk. The CO₂ content of the rapidly cooled eggs (1.8 mg of CO₂/g of albumen) showed no difference between treatments A, B, and C, but it was significantly higher than the control (1.3 mg of CO₂/g of albumen). In addition, the vitelline membrane strength of the control decreased 65% during storage and was between 30 and 50% of the vitelline membrane strength of CO₂-cooled eggs at 12 wk. Rapid cooling with liquid CO₂ extends shelf life of shell eggs.

UI MeSH Term Description Entries
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D011200 Poultry Domesticated birds raised for food. It typically includes CHICKENS; TURKEYS, DUCKS; GEESE; and others. Fowls, Domestic,Domestic Fowl,Domestic Fowls,Fowl, Domestic,Poultries
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D003080 Cold Temperature An absence of warmth or heat or a temperature notably below an accustomed norm. Cold,Cold Temperatures,Temperature, Cold,Temperatures, Cold
D004531 Eggs Animal reproductive bodies, or the contents thereof, used as food. The concept is differentiated from OVUM, the anatomic or physiologic entity.
D004780 Environment, Controlled A state in which the environs of hospitals, laboratories, domestic and animal housing, work places, spacecraft, and other surroundings are under technological control with regard to air conditioning, heating, lighting, humidity, ventilation, and other ambient features. The concept includes control of atmospheric composition. (From Jane's Aerospace Dictionary, 3d ed) Clean Rooms,Laminar Air-Flow Areas,Controlled Environment,Area, Laminar Air-Flow,Clean Room,Controlled Environments,Environments, Controlled,Laminar Air Flow Areas,Laminar Air-Flow Area,Room, Clean
D005519 Food Preservation Procedures or techniques used to keep food from spoiling. Preservation, Food
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

P Banerjee, and K M Keener
May 2002, Poultry science,
P Banerjee, and K M Keener
November 2002, Poultry science,
P Banerjee, and K M Keener
March 2016, Journal of food science,
P Banerjee, and K M Keener
December 2015, Animal nutrition (Zhongguo xu mu shou yi xue hui),
P Banerjee, and K M Keener
April 1995, Journal of food protection,
P Banerjee, and K M Keener
September 1969, Poultry science,
Copied contents to your clipboard!