Light microscopic and ultrastructural analysis of GABA-immunoreactive profiles in the monkey spinal cord. 1990

S M Carlton, and E S Hayes
Marine Biomedical Institute, University of Texas Medical Branch, Galveston 77550.

It is hypothesized that terminals containing gamma-aminobutyric acid (GABA) participate in presynaptic inhibition of primary afferents. To date, few convincing GABA-immunoreactive (GABA-IR) axo-axonic synapses have been demonstrated in support of this theory. The goal of this study is to document the relationship between GABA-IR profiles and central terminals in glomerular complexes in lumbar cord of the monkey (Macaca fascicularis). In addition, the relationship between GABA-IR profiles and other neural elements are analyzed in order to better understand the processing of sensory input in the spinal cord. GABA-IR cell bodies were present in Lissauer's tract (LT) and in all laminae in the spinal gray matter except lamina IX. GABA-IR fibers and terminals were heavily concentrated in LT; laminae I, II, and III; and present in moderate concentration in the deeper laminae of the dorsal horn, ventral horn (especially in association with presumed motor neurons), and lamina X. Electron microscopic analysis confined to LT and laminae I, II, and III demonstrated GABA-IR cell bodies, dendrites, and myelinated and unmyelinated fibers. GABA-IR cell bodies received sparse synaptic input, some of which was immunoreactive for GABA. The majority of the synaptic input to GABA-IR neurons occurred at the dendritic level. Furthermore, the presence of numerous vesicle-containing GABA-IR dendrites making synaptic interactions indicated that GABA-IR dendrites also provided a major site of output. Two consistent arrangements were observed in laminae I-III concerning vesicle-containing GABA-IR dendrites: 1) they were often postsynaptic to central terminals and 2) they participated in reciprocal synapses. The majority of GABA-IR axon terminals observed contained round clear vesicles and varying numbers of dense core vesicles. Only on rare occasions were GABA-IR terminals with flattened vesicles observed. GABA-IR terminals were not observed as presynaptic elements in axo-axonic synapses; however, on some occasions, GABA-IR profiles presumed to be axon terminals were observed postsynaptic to large glomerular type terminals. Our findings suggest that a frequent synaptic arrangement exists in which primary afferent terminals relay sensory information into a GABAergic system for further processing. Furthermore, GABA-IR dendrites appear to be the major source of input and output for this inhibitory system. The implications of this GABAergic neurocircuitry are discussed in relation to the processing of sensory input in the superficial dorsal horn and in terms of mechanisms of primary afferent depolarization (PAD).

UI MeSH Term Description Entries
D008161 Lumbosacral Region Region of the back including the LUMBAR VERTEBRAE, SACRUM, and nearby structures. Lumbar Region,Lumbar Regions,Lumbosacral Regions,Region, Lumbar,Region, Lumbosacral,Regions, Lumbar,Regions, Lumbosacral
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

S M Carlton, and E S Hayes
May 1989, The Journal of comparative neurology,
S M Carlton, and E S Hayes
August 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S M Carlton, and E S Hayes
December 1989, Journal of the autonomic nervous system,
S M Carlton, and E S Hayes
September 2001, The Journal of comparative neurology,
S M Carlton, and E S Hayes
January 1992, The Journal of comparative neurology,
Copied contents to your clipboard!