The relationship between viral RNA, myelin-specific mRNAs, and demyelination in central nervous system disease during Theiler's virus infection. 1990

M Yamada, and A Zurbriggen, and R S Fujinami
Department of Pathology, University of California, San Diego, La Jolla.

The DA strain of Theiler's murine encephalomyelitis virus (DAV) causes a chronic demyelinating disease in susceptible mouse strains. To elucidate the pathogenesis of DAV-induced demyelination, the authors investigated the spatial and chronologic relationship between virus (antigen and RNA), myelin-specific mRNAs, and demyelination in DAV-infected mice using immunohistochemistry, in situ hybridization, and slot blot hybridization analyses. In spinal cord white matter, viral RNA was detected easily in ventral root entry zones 1 to 2 weeks after infection. Viral RNA increased to maximum levels by 4 weeks after infection, which was associated with inflammation and mild demyelination. At 8 to 12 weeks after infection, when demyelination became most extensive, viral RNA was significantly decreased. Demyelination did not chronologically or spatially parallel the presence of viral RNA within the spinal cord. Decrease of myelin-specific mRNAs, including myelin-basic protein and proteolipid protein mRNAs, was observed within the demyelinating lesions with or without detectable viral RNA. These results indicate that a viral infection of white matter in the early phase of the infection initiates spinal cord disease leading to demyelination, but later an ongoing immunopathologic process contributes to the presence of extensive demyelination.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D002493 Central Nervous System Diseases Diseases of any component of the brain (including the cerebral hemispheres, diencephalon, brain stem, and cerebellum) or the spinal cord. CNS Disease,Central Nervous System Disease,Central Nervous System Disorder,CNS Diseases,Central Nervous System Disorders
D003711 Demyelinating Diseases Diseases characterized by loss or dysfunction of myelin in the central or peripheral nervous system. Clinically Isolated CNS Demyelinating Syndrome,Clinically Isolated Syndrome, CNS Demyelinating,Demyelinating Disorders,Demyelination,Demyelinating Disease,Demyelinating Disorder,Demyelinations
D004680 Maus Elberfeld virus A strain of ENCEPHALOMYOCARDITIS VIRUS, a species of CARDIOVIRUS, usually causing an inapparent intestinal infection in mice. A small number of mice may show signs of flaccid paralysis. Encephalomyelitis Virus, Murine,Mouse Elberfeld Virus,Mouse Encephalomyelitis Virus,Murine Encephalomyelitis Virus,Encephalomyelitis Virus, Mouse
D004769 Enterovirus Infections Diseases caused by ENTEROVIRUS. Infections, Enterovirus,Enterovirus Infection,Infection, Enterovirus
D005260 Female Females

Related Publications

M Yamada, and A Zurbriggen, and R S Fujinami
November 1973, Infection and immunity,
M Yamada, and A Zurbriggen, and R S Fujinami
August 1979, Journal of the neurological sciences,
M Yamada, and A Zurbriggen, and R S Fujinami
January 2001, Advances in virus research,
M Yamada, and A Zurbriggen, and R S Fujinami
February 2007, PLoS pathogens,
M Yamada, and A Zurbriggen, and R S Fujinami
December 1999, Journal of neurovirology,
M Yamada, and A Zurbriggen, and R S Fujinami
February 2004, Journal of neuroimmunology,
M Yamada, and A Zurbriggen, and R S Fujinami
January 1976, UCLA forum in medical sciences,
M Yamada, and A Zurbriggen, and R S Fujinami
September 2009, PLoS pathogens,
M Yamada, and A Zurbriggen, and R S Fujinami
August 1976, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!