Molecular cloning and sequence analysis of cDNA encoding human ferrochelatase. 1990

Y Nakahashi, and S Taketani, and M Okuda, and K Inoue, and R Tokunaga
Third Department of Internal Medicine, Kansai Medical University, Osaka, Japan.

The cDNA encoding human ferrochelatase [EC 4.99.1.1] was isolated from a human placenta cDNA library in bacteriophage lambda gt11 by screening with a radiolabeled fragment of mouse ferrochelatase cDNA. The cDNA had an open reading frame of 1269 base pairs (bp) encoding a protein of 423 amino acid residues (Mr. 47,833) with alternative putative polyadenylation signals in the 3' non-coding regions and poly (A) tails. Amino acid sequencing showed that the mature protein consists of 369 amino acid residues (Mr. 42,158) with a putative leader sequence of 54 amino acid residues. The human enzyme showed an 88% identity to mouse enzyme and 46% to yeast enzyme. Northern blot analysis showed two mRNAs of about 2500 and 1600 bp for ferrochelatase in K562 and HepG2 cells. As full-length cDNA for human ferrochelatase is now available, molecular lesions related to erythropoietic protoporphyria can be characterized.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005294 Ferrochelatase A mitochondrial enzyme found in a wide variety of cells and tissues. It is the final enzyme in the 8-enzyme biosynthetic pathway of HEME. Ferrochelatase catalyzes ferrous insertion into protoporphyrin IX to form protoheme or heme. Deficiency in this enzyme results in ERYTHROPOIETIC PROTOPORPHYRIA. Heme Synthetase,Porphyrin-Metal Chelatase,Protoheme Ferro-Lyase,Zinc Chelatase,Chelatase, Porphyrin-Metal,Chelatase, Zinc,Ferro-Lyase, Protoheme,Porphyrin Metal Chelatase,Protoheme Ferro Lyase,Synthetase, Heme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

Y Nakahashi, and S Taketani, and M Okuda, and K Inoue, and R Tokunaga
August 1988, FEBS letters,
Y Nakahashi, and S Taketani, and M Okuda, and K Inoue, and R Tokunaga
July 1990, FEBS letters,
Y Nakahashi, and S Taketani, and M Okuda, and K Inoue, and R Tokunaga
September 1988, FEBS letters,
Y Nakahashi, and S Taketani, and M Okuda, and K Inoue, and R Tokunaga
September 1996, Gene,
Y Nakahashi, and S Taketani, and M Okuda, and K Inoue, and R Tokunaga
April 1994, DNA and cell biology,
Y Nakahashi, and S Taketani, and M Okuda, and K Inoue, and R Tokunaga
November 1991, Gene,
Y Nakahashi, and S Taketani, and M Okuda, and K Inoue, and R Tokunaga
January 1987, Gene,
Y Nakahashi, and S Taketani, and M Okuda, and K Inoue, and R Tokunaga
May 1992, The Journal of biological chemistry,
Y Nakahashi, and S Taketani, and M Okuda, and K Inoue, and R Tokunaga
April 1993, Experimental eye research,
Y Nakahashi, and S Taketani, and M Okuda, and K Inoue, and R Tokunaga
January 1991, FEBS letters,
Copied contents to your clipboard!