Interaction of plasma apolipoproteins with lipid monolayers. 1979

R L Jackson, and F Pattus, and R A Demel

The monolayer technique has been used to study the interaction of lipids with plasma apolipoproteins. Apolipoprotein C-II and C-III from human very low density lipoproteins, apolipoprotein A-I from human high density lipoproteins and arginine-rich protein from swine very low density lipoproteins were studied. The injection of each apoprotein underneath a monolayer of egg phosphatidy[14C]choline at 20 mN/m caused an increase in surface pressure to approximately 30 mN/m. With apolipoprotein C-II and apolipoprotein C-III there was a decrease in surface radioactivity indicating that the apoproteins were removing phospholipid from the interface; the removal of phospholipid was specific for apolipoprotein C-II and apolipoprotein C-III. Although there was a removal of phospholipid from the monolayer, the surface pressure remained constant and was due to the accumulation of apoprotein at the interface. The rate of surface radioactivity decrease was a function of protein concentration, required lipid in a fluid state and, of the lipids tested, was specific for phosphatidylcholine. Cholesterol and phosphatidylinositol were not removed from the interface. The addition of 33 mol% cholesterol to the phosphatidylcholine monolayer did not affect the removal of phospholipids by apolipoprotein C-III. The addition of phospholipid liposomes to the subphase greatly facilitated the apolipoprotein C-II-mediated removal of phospholipid from the interface. Although apolipoprotein A-I and arginine-rich protein gave surface pressure increases, phospholipid was only slightly removed fromthe interface by the addition of liposomes. Based on these findings, we conclude that the apolipoproteins C interact specifically with phosphatidylcholine at the interface. This interaction is important as it relates to the transfer of the apolipoproteins C and phospholipids from very low density lipoproteins to other plasma lipoproteins. The addition of human plasma high density lipoproteins or very low density lipoproteins to the subphase increased the apolipoprotein C-mediated removal of phosphatidyl[14C]choline from the interface 3--4 fold. Low density lipoproteins did not affect the rate of decrease. During lipolysis of very low density lipoproteins to the subphase increased the apolipoprotein C-mediated removal of with the lipid monolayer. Lipolysis experiments were performed in a monolayer trough containing a surface film of egg phosphatidyl[14C]choline and a subphase of very low density lipoproteins and bovine serum albumin. Lipolysis was initiated by the addition of purified milk lipoprotein lipase to the subphase. As a result of lipolysis, there was a decrease in surface radioactivity of phosphatidylcholine. The pre-addition of high density lipoproteins decreased the rate of decrease in surface radioactivity...

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008079 Lipoproteins, VLDL A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues. Pre-beta-Lipoprotein,Prebeta-Lipoprotein,Prebeta-Lipoproteins,Very Low Density Lipoprotein,Very-Low-Density Lipoprotein,Very-Low-Density Lipoproteins,Lipoprotein VLDL II,Lipoproteins, VLDL I,Lipoproteins, VLDL III,Lipoproteins, VLDL1,Lipoproteins, VLDL2,Lipoproteins, VLDL3,Pre-beta-Lipoproteins,Lipoprotein, Very-Low-Density,Lipoproteins, Very-Low-Density,Pre beta Lipoprotein,Pre beta Lipoproteins,Prebeta Lipoprotein,Prebeta Lipoproteins,VLDL Lipoproteins,VLDL1 Lipoproteins,VLDL2 Lipoproteins,VLDL3 Lipoproteins,Very Low Density Lipoproteins
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001053 Apolipoproteins Protein components on the surface of LIPOPROTEINS. They form a layer surrounding the hydrophobic lipid core. There are several classes of apolipoproteins with each playing a different role in lipid transport and LIPID METABOLISM. These proteins are synthesized mainly in the LIVER and the INTESTINES. Apolipoprotein

Related Publications

R L Jackson, and F Pattus, and R A Demel
January 1987, Biofizika,
R L Jackson, and F Pattus, and R A Demel
September 1982, Biochimica et biophysica acta,
R L Jackson, and F Pattus, and R A Demel
March 2004, Biochimica et biophysica acta,
R L Jackson, and F Pattus, and R A Demel
March 1991, The Journal of biological chemistry,
R L Jackson, and F Pattus, and R A Demel
July 1993, Biulleten' eksperimental'noi biologii i meditsiny,
R L Jackson, and F Pattus, and R A Demel
April 1973, Biochimica et biophysica acta,
R L Jackson, and F Pattus, and R A Demel
July 1968, The Biochemical journal,
R L Jackson, and F Pattus, and R A Demel
August 2014, Langmuir : the ACS journal of surfaces and colloids,
R L Jackson, and F Pattus, and R A Demel
January 1992, Biokhimiia (Moscow, Russia),
R L Jackson, and F Pattus, and R A Demel
December 1974, Biochimica et biophysica acta,
Copied contents to your clipboard!