Low density lipoprotein receptors and catabolism in primary cultures of rabbit hepatocytes. 1979

P A Soltys, and O W Portman

Rabbit 125I-labelled low density lipoproteins (LDL) were incubated with primary monolayer cultures of rabbit hepatocytes in studies designed to assess the role of liver in LDL catabolism at the cellular level. After hepatocytes were preincubated for 20 h in lipoprotein-free medium, they exhibited time- and concentration-dependent interaction with 125I-labelled DLD at concentrations to 1 mg LDL protein/ml and times to 24 h. After a 3 h (37 degrees C) incubation with 50 microgram LDL protein/ml, hepatocytes bound 400 ng (LDL protein)/mg (cell protein), internalized 280 ng/mg, and degraded 660 ng/mg. Internalization and degradation may be greater than indicated by these values since pulse studies suggested the presence of a deiodinase which attacks cell associated 125I-labelled LDL. The amounts of LDL bound to hepatocytes after 3 h (37 degrees C) were similar to amounts for fibroblasts, but DLD internalization and degradation were considerably less. Rabbit hyperlipidemic 125I-labelled DLD showed the same amount of binding but 1.39 times more internalization and degradation than normolipidemic 125I-labelled LDL. Binding of both control and hyperlipidemic LDL was 3-fold greater at 24 and 42 h than at O or 3 h but addition of a 50-fold molar excess of high density lipoproteins (HDL) prevented increased LDL binding with time. Induction of specific high affinity receptors for binding LDL was shown to occur by preincubation of hepatocytes for increasing periods in lipoprotein-free medium and then measuring 125I-labelled LDL binding at 4 degrees C in the presence and absence of excess unlabelled LDL. Finally, hepatocytes took up 40 times more LDL than sucrose or dextran over a 24-h period, an indication that the uptake of LDL occurs via some mechanism other than simple bulk fluid endocytosis.

UI MeSH Term Description Entries
D006949 Hyperlipidemias Conditions with excess LIPIDS in the blood. Hyperlipemia,Hyperlipidemia,Lipemia,Lipidemia,Hyperlipemias,Lipemias,Lipidemias
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

P A Soltys, and O W Portman
July 1992, The Journal of steroid biochemistry and molecular biology,
P A Soltys, and O W Portman
July 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology,
P A Soltys, and O W Portman
July 1989, The Biochemical journal,
P A Soltys, and O W Portman
January 1999, American journal of nephrology,
Copied contents to your clipboard!