| D004305 |
Dose-Response Relationship, Drug |
The relationship between the dose of an administered drug and the response of the organism to the drug. |
Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response |
|
| D006224 |
Cricetinae |
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. |
Cricetus,Hamsters,Hamster |
|
| D000068736 |
Duloxetine Hydrochloride |
A thiophene derivative and selective NEUROTRANSMITTER UPTAKE INHIBITOR for SEROTONIN and NORADRENALINE (SNRI). It is an ANTIDEPRESSIVE AGENT and ANXIOLYTIC, and is also used for the treatment of pain in patients with DIABETES MELLITUS and FIBROMYALGIA. |
Cymbalta,Duloxetine,Duloxetine Ethanedioate (1:1), (+-)-isomer - T353987,Duloxetine HCl,Duloxetine, (+)-isomer,LY 227942,LY 248686,LY-227942,LY-248686,LY227942,N-methyl-3-(1-naphthalenyloxy)-2-thiophenepropanamine,N-methyl-3-(1-naphthalenyloxy)-3-(2-thiophene)propanamide,HCl, Duloxetine,Hydrochloride, Duloxetine,LY248686 |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D013876 |
Thiophenes |
A monocyclic heteroarene furan in which the oxygen atom is replaced by a sulfur. |
Thiophene |
|
| D016466 |
CHO Cells |
CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. |
CHO Cell,Cell, CHO,Cells, CHO |
|
| D051672 |
Shal Potassium Channels |
A shaker subfamily of potassium channels that participate in transient outward potassium currents by activating at subthreshold MEMBRANE POTENTIALS, inactivating rapidly, and recovering from inactivation quickly. |
KCND1 Potassium Channel,KCND2 Potassium Channel,KCND3 Potassium Channel,Kv4 Potassium Channels,Kv4.1 Potassium Channel,Kv4.2 Potassium Channel,Kv4.3 Potassium Channel,Kv4.3L Potassium Channel,Potassium Channel, KCND1,Potassium Channel, KCND2,Potassium Channel, KCND3,Potassium Channel, Kv4.1,Potassium Channel, Kv4.2,Potassium Channel, Kv4.3,Potassium Channel, Kv4.3L,Potassium Channels, Kv4,Potassium Channels, Shal |
|
| D018408 |
Patch-Clamp Techniques |
An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. |
Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings |
|
| D026902 |
Potassium Channel Blockers |
A class of drugs that act by inhibition of potassium efflux through cell membranes. Blockade of potassium channels prolongs the duration of ACTION POTENTIALS. They are used as ANTI-ARRHYTHMIA AGENTS and VASODILATOR AGENTS. |
Channel Blockers, Potassium,Potassium Channel Blocker,Blocker, Potassium Channel,Blockers, Potassium Channel,Channel Blocker, Potassium |
|