The effects of cold-induced muscle spindle secondary activity on monosynaptic and stretch reflexes in the decerebrate cat. 1979

C E Chapman, and W J Michalski, and J J Séguin

The effects of muscle spindle secondary ending activity on the stretch reflex were studied in unanesthetized decerebrate cats. Activation of secondary endings was accomplished by reducing the muscle temperature. This has been shown to cause a sustained asynchronous discharge from secondary endings. Cooling of the medial gastrocnemius or lateral gastrocnemius-soleus muscles caused an increase in the phasic and tonic components of their stretch reflexes. Cooling of the relaxed medial gastrocnemius muscle caused similar increases in the components of the stretch reflex of the synergistic lateral gastrocnemius-soleus muscle and an increase in its monosynaptic reflex. It was concluded that the facilitatory autogenetic and synergistic effects of muscle cooling on the stretch and monosynaptic reflexes were brought about by activity in group II afferents from muscle spindle secondary endings and could not be ascribed to any other type of muscle receptor. These results support the concept of an excitatory role for the secondary endings of the muscle spindle in the stretch reflex of the decerebrate cat.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003080 Cold Temperature An absence of warmth or heat or a temperature notably below an accustomed norm. Cold,Cold Temperatures,Temperature, Cold,Temperatures, Cold
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

C E Chapman, and W J Michalski, and J J Séguin
July 1970, British journal of pharmacology,
C E Chapman, and W J Michalski, and J J Séguin
August 2002, The Journal of physiology,
C E Chapman, and W J Michalski, and J J Séguin
December 1975, The Journal of physiology,
C E Chapman, and W J Michalski, and J J Séguin
May 1970, The Journal of physiology,
C E Chapman, and W J Michalski, and J J Séguin
October 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C E Chapman, and W J Michalski, and J J Séguin
October 1976, Brain research,
C E Chapman, and W J Michalski, and J J Séguin
January 1986, Experimental brain research,
C E Chapman, and W J Michalski, and J J Séguin
May 1966, Experimental neurology,
C E Chapman, and W J Michalski, and J J Séguin
October 1975, Experimental neurology,
Copied contents to your clipboard!