Multiple protein factors bind to a rice glutelin promoter region. 1990

S Y Kim, and R Wu
Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853.

Our goal is to identify cis-acting elements in the regulatory region of the major seed storage protein gene in rice. A glutelin gene (pGL5-1) has been cloned by screening a rice genomic DNA library with synthetic oligonucleotides and with an amplified DNA fragment. A transient expression assay using immature rice seeds shows that its 5' flanking sequence can direct the synthesis of beta-glucuronidase (GUS) when fused upstream of the GUS coding region. Gel-retardation assays were performed to study protein-DNA interactions between putative regulatory sequences of pGL5-1 and nuclear proteins from immature rice seeds. We demonstrate that at least six protein-DNA complexes are formed between the 5' flanking sequence of pGL5-1 (-677 to -45) and nuclear protein factors. By subsequent DNase I-footprinting analyses we defined several protein-binding regions. Two of the protein-binding sequences contain the TGAGTCA motif, which is also present in the -300 element found in the 5' flanking sequences of several storage protein genes of other crop plants, and to which the transcription factors jun and GCN4 bind.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005983 Glutens Prolamins in the endosperm of SEEDS from the Triticeae tribe which includes species of WHEAT; BARLEY; and RYE. Gluten,Gluten Protein,Glutelin,Glutelins,Gluten Proteins,Hordein,Hordeins,Secalin,Secalins,Protein, Gluten
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding

Related Publications

S Y Kim, and R Wu
January 1990, Plant molecular biology,
S Y Kim, and R Wu
July 1987, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
S Y Kim, and R Wu
April 1990, Molecular & general genetics : MGG,
S Y Kim, and R Wu
November 2022, Plant science : an international journal of experimental plant biology,
S Y Kim, and R Wu
September 1992, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
S Y Kim, and R Wu
May 1985, Plant physiology,
Copied contents to your clipboard!