Adenovirus early region 4 stimulates mRNA accumulation via 5' introns. 1990

K Nordqvist, and G Akusjärvi
Department of Microbial Genetics, Karolinska Institutet, Stockholm, Sweden.

The adenovirus major late transcription unit accounts for most virus-specific transcription late after infection. All mRNAs expressed from this unit carry a short spliced leader, the so-called tripartite leader, attached to their 5' ends. Here we describe a function for an adenovirus gene product in the control of major late mRNA abundance. We show that early region 4 (E4) stimulates mRNA accumulation from tripartite leader intron-containing transcription units approximately 10-fold in short-term transfection assays. The effect was already detectable in nuclear RNA and was not due to a transcriptional activation through any of the major late promoter elements or through an effect at nuclear to cytoplasmic mRNA transport. A surprising positional effect of the intron was noted. To be E4 responsive, the intron had to be placed close to the pre-mRNA 5' end. The same intron located far downstream in the 3' untranslated region of the mRNA was not E4 responsive. The E4 enhancement was not dependent on specific virus exon or intron sequences. These results suggest that E4 modulates a general pathway in mammalian mRNA formation.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000260 Adenoviruses, Human Species of the genus MASTADENOVIRUS, causing a wide range of diseases in humans. Infections are mostly asymptomatic, but can be associated with diseases of the respiratory, ocular, and gastrointestinal systems. Serotypes (named with Arabic numbers) have been grouped into species designated Human adenovirus A-G. APC Viruses,APC Virus,Adenovirus, Human,Human Adenovirus,Human Adenoviruses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012323 RNA Processing, Post-Transcriptional Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein. Post-Transcriptional RNA Modification,RNA Processing,Post-Transcriptional RNA Processing,Posttranscriptional RNA Processing,RNA Processing, Post Transcriptional,RNA Processing, Posttranscriptional,Modification, Post-Transcriptional RNA,Modifications, Post-Transcriptional RNA,Post Transcriptional RNA Modification,Post Transcriptional RNA Processing,Post-Transcriptional RNA Modifications,Processing, Posttranscriptional RNA,Processing, RNA,RNA Modification, Post-Transcriptional,RNA Modifications, Post-Transcriptional
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

K Nordqvist, and G Akusjärvi
January 2000, Virus genes,
K Nordqvist, and G Akusjärvi
January 2007, Methods in molecular medicine,
K Nordqvist, and G Akusjärvi
December 1984, Nucleic acids research,
K Nordqvist, and G Akusjärvi
April 1993, Virology,
K Nordqvist, and G Akusjärvi
September 1984, Journal of virology,
K Nordqvist, and G Akusjärvi
September 1996, Journal of virology,
K Nordqvist, and G Akusjärvi
May 1999, Molecular microbiology,
K Nordqvist, and G Akusjärvi
February 1983, Journal of virology,
K Nordqvist, and G Akusjärvi
September 2004, Virus research,
Copied contents to your clipboard!