Effect of the calcium to phosphorus ratio on the setting properties of calcium phosphate bone cements. 2012

M D Vlad, and S Gómez, and M Barracó, and J López, and E Fernández
Interdepartment Research Group for the Applied Scientific Collaboration (IRGASC), Division of Biomaterials & Bioengineering, Technical University of Catalonia (UPC), Avda. Diagonal 647, 08028, Barcelona, Spain.

α-Tricalcium phosphate (α-TCP) has become the main reactant of most experimental and commercial ceramic bone cements. It has calcium-to-phosphorus (Ca/P) ratio of 1.50. The present study expands and reports on the microstructures and mechanical properties of calcium phosphate (CP) cements containing sintered monolithic reactants obtained in the interval 1.29 < Ca/P < 1.77. The study focuses on their cement setting and hardening properties as well as on their microstructure and crystal phase evolution. The results showed that: (a) CP-cements made with reactants with Ca/P ratio other than 1.50 have longer setting and lower hardening properties; (b) CP-cements reactivity was clearly affected by the Ca/P ratio of the starting reactant; (c) reactants with Ca/P < 1.50 were composed of several phases, calcium pyrophosphate and α- and β-TCP. Similarly, reactants with Ca/P > 1.50 were composed of α-TCP, tetracalcium phosphate and hydroxyapatite; (d) only the reactant with Ca/P = 1.50 was monophasic and was made of α-TCP, which transformed during the setting into calcium deficient hydroxyapatite; (e) CP-cements developed different crystal microstructures with specific features depending on the Ca/P ratio of the starting reactant.

UI MeSH Term Description Entries
D008422 Materials Testing The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility. Biocompatibility Testing,Biocompatible Materials Testing,Hemocompatibility Testing,Testing, Biocompatible Materials,Testing, Hemocompatible Materials,Hemocompatibility Testings,Hemocompatible Materials Testing,Materials Testing, Biocompatible,Materials Testing, Hemocompatible,Testing, Biocompatibility,Testing, Hemocompatibility,Testing, Materials,Testings, Biocompatibility
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D010758 Phosphorus A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions. Black Phosphorus,Phosphorus-31,Red Phosphorus,White Phosphorus,Yellow Phosphorus,Phosphorus 31,Phosphorus, Black,Phosphorus, Red,Phosphorus, White,Phosphorus, Yellow
D011232 Chemical Precipitation The formation of a solid in a solution as a result of a chemical reaction or the aggregation of soluble substances into complexes large enough to fall out of solution. Precipitation, Chemical
D001843 Bone Cements Adhesives used to fix prosthetic devices to bones and to cement bone to bone in difficult fractures. Synthetic resins are commonly used as cements. A mixture of monocalcium phosphate, monohydrate, alpha-tricalcium phosphate, and calcium carbonate with a sodium phosphate solution is also a useful bone paste. Bone Cement,Bone Glues,Bone Pastes,Bone Glue,Bone Paste,Cement, Bone,Cements, Bone,Glue, Bone,Glues, Bone,Paste, Bone,Pastes, Bone
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002130 Calcium Phosphates Calcium salts of phosphoric acid. These compounds are frequently used as calcium supplements. Phosphates, Calcium
D002484 Cementation The joining of objects by means of a cement (e.g., in fracture fixation, such as in hip arthroplasty for joining of the acetabular component to the femoral component). In dentistry, it is used for the process of attaching parts of a tooth or restorative material to a natural tooth or for the attaching of orthodontic bands to teeth by means of an adhesive. Cementations
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline

Related Publications

M D Vlad, and S Gómez, and M Barracó, and J López, and E Fernández
August 2002, Biomolecular engineering,
M D Vlad, and S Gómez, and M Barracó, and J López, and E Fernández
June 2008, Journal of biomedical materials research. Part A,
M D Vlad, and S Gómez, and M Barracó, and J López, and E Fernández
November 1989, Biomaterials,
M D Vlad, and S Gómez, and M Barracó, and J López, and E Fernández
July 1991, Biomaterials,
M D Vlad, and S Gómez, and M Barracó, and J López, and E Fernández
March 2008, Journal of biomedical materials research. Part A,
M D Vlad, and S Gómez, and M Barracó, and J López, and E Fernández
December 2020, Biomedical materials (Bristol, England),
M D Vlad, and S Gómez, and M Barracó, and J López, and E Fernández
January 2023, ACS biomaterials science & engineering,
M D Vlad, and S Gómez, and M Barracó, and J López, and E Fernández
April 2016, Journal of functional biomaterials,
M D Vlad, and S Gómez, and M Barracó, and J López, and E Fernández
July 2000, Journal of materials science. Materials in medicine,
M D Vlad, and S Gómez, and M Barracó, and J López, and E Fernández
October 2019, Langmuir : the ACS journal of surfaces and colloids,
Copied contents to your clipboard!