Flavokinase and FAD synthetase from Bacillus subtilis specific for reduced flavins. 1979

E B Kearney, and J Goldenberg, and J Lipsick, and M Perl

A flavokinase preparation from Bacillus subtilis is described which catalyzes the phosphorylation of reduced, but not oxidized, riboflavin. The enzyme is distinguished from other known flavokinases also in having an unusually low Km for the flavin substrate, 50 to 100 nM. ATP is the obligatory phosphate donor; one ATP is utilized for each FMNH2 formed. Mg2+ or Zn2+ is required for the reaction; Co2+ and Mn2+ will substitute, but less effectively. The same enzyme preparation catalyzes the synthesis of FADH2 from FMNH2 and ATP, but not the synthesis of FAD from FMN and ATP. FADH2 is also formed from reduced riboflavin, presumably by sequential flavokinase and FAD synthetase action. Zn2+ cannot replace Mg2+ in FADH2 formation. The reverse reaction, formation of FMN from FAD, occurs only with reduced FAD, giving rise to FMNH2, and is dependent on the presence of inorganic pyrophosphate. The enzyme thus appears to be an FADH2 pyrophosphorylase. The two enzymatic activities, flavokinase and FADH2 pyrophosphorylase, although not separated during the purification procedure, are distinguished by differences in metal ion specificity, in concentration dependence for ATP (apparent Km for ATP = 300 microM for FADH2 synthesis and 6.5 microM for flavokinase), and in the inhibitory effects of riboflavin analogues.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009713 Nucleotidyltransferases A class of enzymes that transfers nucleotidyl residues. EC 2.7.7. Nucleotidyltransferase
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D005415 Flavins Derivatives of the dimethylisoalloxazine (7,8-dimethylbenzo[g]pteridine-2,4(3H,10H)-dione) skeleton. Flavin derivatives serve an electron transfer function as ENZYME COFACTORS in FLAVOPROTEINS.
D005486 Flavin Mononucleotide A coenzyme for a number of oxidative enzymes including NADH DEHYDROGENASE. It is the principal form in which RIBOFLAVIN is found in cells and tissues. FMN,Flavin Mononucleotide Disodium Salt,Flavin Mononucleotide Monosodium Salt,Flavin Mononucleotide Monosodium Salt, Dihydrate,Flavin Mononucleotide Sodium Salt,Riboflavin 5'-Monophosphate,Riboflavin 5'-Phosphate,Riboflavin Mononucleotide,Sodium Riboflavin Phosphate,5'-Monophosphate, Riboflavin,5'-Phosphate, Riboflavin,Mononucleotide, Flavin,Mononucleotide, Riboflavin,Phosphate, Sodium Riboflavin,Riboflavin 5' Monophosphate,Riboflavin 5' Phosphate,Riboflavin Phosphate, Sodium
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D012256 Riboflavin Nutritional factor found in milk, eggs, malted barley, liver, kidney, heart, and leafy vegetables. The richest natural source is yeast. It occurs in the free form only in the retina of the eye, in whey, and in urine; its principal forms in tissues and cells are as FLAVIN MONONUCLEOTIDE and FLAVIN-ADENINE DINUCLEOTIDE. Vitamin B 2,Vitamin G,Vitamin B2
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

E B Kearney, and J Goldenberg, and J Lipsick, and M Perl
April 1990, Archives of biochemistry and biophysics,
E B Kearney, and J Goldenberg, and J Lipsick, and M Perl
February 2003, Biochemistry. Biokhimiia,
E B Kearney, and J Goldenberg, and J Lipsick, and M Perl
January 1985, Methods in enzymology,
E B Kearney, and J Goldenberg, and J Lipsick, and M Perl
January 2009, Biochimie,
E B Kearney, and J Goldenberg, and J Lipsick, and M Perl
May 1980, The Journal of biological chemistry,
E B Kearney, and J Goldenberg, and J Lipsick, and M Perl
May 1981, Journal of biochemistry,
E B Kearney, and J Goldenberg, and J Lipsick, and M Perl
October 1996, Proteins,
E B Kearney, and J Goldenberg, and J Lipsick, and M Perl
January 2000, Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica,
E B Kearney, and J Goldenberg, and J Lipsick, and M Perl
January 1985, Methods in enzymology,
E B Kearney, and J Goldenberg, and J Lipsick, and M Perl
October 1997, Analytical biochemistry,
Copied contents to your clipboard!