Effect of oestrogen receptors on brain NMDA receptors of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice. 2012

S Al-Sweidi, and M Morissette, and T Di Paolo
Endocrinology and Genomics Research Axis of the CHUQ, CHUL, Quebec City, Quebec, Canada.

Parkinson's disease (PD) is characterised by the loss of nigrostriatal dopamine (DA) neurones and glutamate overactivity. There is substantial evidence to suggest that oestrogens prevent or delay the disease. 17β-oestradiol has neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD and modulates brain NMDA receptors. In MPTP-lesioned mice, oestrogen receptor (ER)α and ERβ are important in 17β-oestradiol-induced neuroprotection. To evaluate the role of ERs in the response of NMDA receptors to lesion, we compared wild-type (WT) with ER knockout (KO) C57Bl/6 male mice that received 7, 9 or 11 mg/kg of MPTP. These mice were also treated with MPTP (9 mg/kg) and 17β-oestradiol. [(3) H]Ro 25-6981 specific binding autoradiography was used to label NMDA receptors containing NR2B subunits. In the frontal and cingulate cortex and striatum, vehicle-treated WT mice had higher [(3) H]Ro 25-6981 specific binding compared to ERKO mice. Cortical [(3) H]Ro 25-6981 specific binding decreased with increasing doses of MPTP in WT and ERKOα but not ERKOβ mice, whereas a dose-related decrease was only observed in the striatum of WT mice remaining low in ERKOα and ERKOβ mice. No effect of 17β-oestradiol treatment in intact or MPTP-lesioned mice of all three genotypes was observed in the cortex, whereas it increased striatal specific binding of intact ERKOβ and MPTP-lesioned WT mice. Striatal [(3) H]Ro 25-6981 specific binding positively correlated with striatal DA concentrations only in WT mice. MPTP and 17β-oestradiol treatments had more limited effects in the hippocampus. Only in the CA3 and dentate gyrus did vehicle and 17β-oestradiol-treated ERKOα mice have higher [(3) H]Ro 25-6981 specific binding than WT and ERKOβ mice, whereas MPTP decreased this specific binding only in the CA1, CA2 and CA3 of ERKOα mice. Hence, brain NMDA receptors were affected by the deletion of ERs, which affect the response to MPTP and 17β-oestradiol treatments with brain region specificity.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010636 Phenols Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
D010880 Piperidines A family of hexahydropyridines.
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Al-Sweidi, and M Morissette, and T Di Paolo
March 1988, Toxicology letters,
S Al-Sweidi, and M Morissette, and T Di Paolo
November 1990, Brain research,
S Al-Sweidi, and M Morissette, and T Di Paolo
August 1986, Neuropharmacology,
S Al-Sweidi, and M Morissette, and T Di Paolo
February 2013, Metallomics : integrated biometal science,
S Al-Sweidi, and M Morissette, and T Di Paolo
January 2006, Journal of applied genetics,
S Al-Sweidi, and M Morissette, and T Di Paolo
January 1987, Ciba Foundation symposium,
S Al-Sweidi, and M Morissette, and T Di Paolo
March 1991, Toxicology,
S Al-Sweidi, and M Morissette, and T Di Paolo
June 1989, The Journal of pharmacology and experimental therapeutics,
S Al-Sweidi, and M Morissette, and T Di Paolo
February 1992, Journal of neurochemistry,
Copied contents to your clipboard!