Vascular smooth muscle cells initiate proliferation of mesenchymal stem cells by mitochondrial transfer via tunneling nanotubes. 2012

Krishna C Vallabhaneni, and Hermann Haller, and Inna Dumler
Nephrology Department, Hannover Medical School, Hannover, Germany.

Multipotent mesenchymal stem cells (MSCs) are promising candidates for regenerative cell-based therapy. The mechanisms underlying MSC differentiation and other functions relevant to therapeutic avenues remain however a matter of debate. Recent reports imply a critical role for intercellular contacts in MSC differentiation. We studied MSC differentiation to vascular smooth muscle cells (VSMCs) in a coculture model using human primary MSCs and VSMCs. We observed that under these conditions, MSCs did not undergo the expected differentiation process. Instead, they revealed an increased proliferation rate. The upregulated MSC proliferation was initiated by direct contacts of MSCs with VSMCs; indirect coculture of both cell types in transwells was ineffective. Intercellular contacts affected cell growth in a unidirectional fashion, since VSMC proliferation was not changed. We observed formation of so-called tunneling nanotubes (TNTs) between MSCs and VSMCs that revealed an intercellular exchange of a fluorescent cell tracker dye. Disruption of TNTs using cytochalasin D or latrunculin B abolished increased proliferation of MSCs initiated by contacts with VSMCs. Using specific fluorescent markers, we identified exchange of mitochondria via TNTs. By generation of VSMCs with mitochondrial dysfunction, we show that mitochondrial transfer from VSMCs to MSCs was required to regulate MSC proliferation in coculture. Our data suggest that MSC interaction with other cell types does not necessarily result in the differentiation process, but rather may initiate a proliferative response. They further point to complex machinery of intercellular communications at the place of vascular injury and to an unrecognized role of mitochondria in these processes.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Krishna C Vallabhaneni, and Hermann Haller, and Inna Dumler
February 2016, Biofabrication,
Krishna C Vallabhaneni, and Hermann Haller, and Inna Dumler
March 2006, Molecular & cellular biomechanics : MCB,
Krishna C Vallabhaneni, and Hermann Haller, and Inna Dumler
December 2012, Cardiovascular research,
Krishna C Vallabhaneni, and Hermann Haller, and Inna Dumler
December 2012, Arteriosclerosis, thrombosis, and vascular biology,
Krishna C Vallabhaneni, and Hermann Haller, and Inna Dumler
July 2015, Cell death and differentiation,
Krishna C Vallabhaneni, and Hermann Haller, and Inna Dumler
January 2024, Current stem cell research & therapy,
Krishna C Vallabhaneni, and Hermann Haller, and Inna Dumler
March 2009, European journal of histochemistry : EJH,
Copied contents to your clipboard!