Lectin cytochemistry on the stratum intermedium and the papillary layer in the rat incisor enamel organ. 1990

H Nakamura, and H Ozawa
Department of Oral Anatomy, Niigata University School of Dentistry, Japan.

Lectin cytochemistry was carried out to elucidate the role of stratum intermedium cells and papillary layer cells in amelogenesis, especially in the process of sugar incorporation and on membrane characteristics according to their cytodifferentiation. Regarding the lectin-reaction on the plasma membrane, little or at best a weak reaction of Con A, UEA-I, PNA, MPA and WGA was seen in stratum intermedium cells from the late differentiation stage to the early secretory stage of ameloblasts. Lectin-stainability in the stratum intermedium increased in accordance with the cytodifferentiation of ameloblasts. At the active secretory stage of ameloblasts, lectins intensely stained the plasma membranes of stratum intermedium cells. The plasma membranes of papillary layer cells at both stages of ruffle-ended and smooth-ended ameloblasts were stained by same lectins as well. The results therefore suggest that: 1) stratum intermedium cells bring about changes in the glycolipids and glycoproteins of their plasma membranes in accordance with the cytodifferentiation of ameloblasts; 2) they regulate the transport of mineral and/or organic materials between ameloblasts and extracellular fluid via highly charged plasma membranes generated by glycocalyx; 3) the cell-cell interaction of stratum intermedium cells with ameloblasts, in which carbohydrate-protein (endogenous lectin) interaction plays a significant role, is important for the cytodifferentiation of these cells. Regarding the papillary layer cells, the results suggest that they also regulate the transport of minerals by their charged plasma membranes and participate in the removal of the enamel matrix.

UI MeSH Term Description Entries
D007180 Incisor Any of the eight frontal teeth (four maxillary and four mandibular) having a sharp incisal edge for cutting food and a single root, which occurs in man both as a deciduous and a permanent tooth. (Jablonski, Dictionary of Dentistry, 1992, p820) Incisors
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002241 Carbohydrates A class of organic compounds composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n. The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrate
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004658 Enamel Organ Epithelial cells surrounding the dental papilla and differentiated into three layers: the inner enamel epithelium, consisting of ameloblasts which eventually form the enamel, and the enamel pulp and external enamel epithelium, both of which atrophy and disappear before and upon eruption of the tooth, respectively. Enamel Organs,Organ, Enamel,Organs, Enamel
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000565 Ameloblasts Cylindrical epithelial cells in the innermost layer of the ENAMEL ORGAN. Their functions include contribution to the development of the dentinoenamel junction by the deposition of a layer of the matrix, thus producing the foundation for the prisms (the structural units of the DENTAL ENAMEL), and production of the matrix for the enamel prisms and interprismatic substance. (From Jablonski's Dictionary of Dentistry, 1992) Ameloblast
D000566 Amelogenesis The elaboration of dental enamel by ameloblasts, beginning with its participation in the formation of the dentino-enamel junction to the production of the matrix for the enamel prisms and interprismatic substance. (Jablonski, Dictionary of Dentistry, 1992). Amelogeneses

Related Publications

H Nakamura, and H Ozawa
January 1973, Journal of ultrastructure research,
H Nakamura, and H Ozawa
March 1966, Journal of ultrastructure research,
H Nakamura, and H Ozawa
January 1983, Archives of oral biology,
H Nakamura, and H Ozawa
January 1972, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
H Nakamura, and H Ozawa
January 1990, Archives of oral biology,
H Nakamura, and H Ozawa
December 1960, Journal of ultrastructure research,
Copied contents to your clipboard!