Mechanisms of general anesthesia. 1990

N P Franks, and W R Lieb
Biophysics Section, Blackett Laboratory, Imperial College of Science, Technology and Medicine, London, UK.

Although general anesthetics are often said to be nonspecific agents, it is likely that they act at a much more restricted set of target sites than commonly believed. The traditional view has been that the primary targets are lipid portions of nerve membranes, but recent evidence shows that the effects on lipid bilayers of clinically relevant levels of anesthetics are very small. Effects on most proteins are also small, but there are notable examples of proteins that are extremely sensitive to anesthetics and mimic the pharmacological profile of anesthetic target sites in animals. Such target sites are amphiphilic in nature, having both hydrophobic and polar components. The polar components appear to behave as good hydrogen-bond acceptors but poor hydrogen-bond donors. Although the targets can accept molecules with a wide variety of shapes and chemical groupings, they are unaffected by molecules exceeding a certain size. Overall, the data can be explained by supposing that the primary target sites underlying general anesthesia are amphiphilic pockets of circumscribed dimensions on particularly sensitive proteins in the central nervous system.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008195 Lymnaea A genus of dextrally coiled freshwater snails that includes some species of importance as intermediate hosts of parasitic flukes. Lymnea,Lymnaeas,Lymneas
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes

Related Publications

N P Franks, and W R Lieb
August 2002, Current opinion in anaesthesiology,
N P Franks, and W R Lieb
July 2010, Korean journal of anesthesiology,
N P Franks, and W R Lieb
January 1967, Anesthesiology,
N P Franks, and W R Lieb
February 2014, Annales francaises d'anesthesie et de reanimation,
N P Franks, and W R Lieb
January 2008, Acta anaesthesiologica Belgica,
N P Franks, and W R Lieb
May 1947, El Dia medico,
N P Franks, and W R Lieb
May 2001, Anasthesiologie, Intensivmedizin, Notfallmedizin, Schmerztherapie : AINS,
N P Franks, and W R Lieb
January 1979, Vestnik Akademii meditsinskikh nauk SSSR,
N P Franks, and W R Lieb
January 2004, Anesteziologiia i reanimatologiia,
N P Franks, and W R Lieb
August 1984, Polski tygodnik lekarski (Warsaw, Poland : 1960),
Copied contents to your clipboard!