Coupling of the glucagon receptor to adenylyl cyclase by GDP: evidence for two levels of regulation of adenylyl cyclase. 1979

R Iyengar, and L Birnbaumer

In rat liver plasma membranes preactivated with guanosine 5'-[beta,gamma-imido[triphosphate (GuoPP[NH]P), GDP promoted coupling of occupied glucagon receptor to adenylyl cyclase [adenylate cyclase; ATP, pyrophosphate-lyase (cyclizing), EC 4.6.1.1] with an apparent association constant Ka of 0.1-0.15 microM. The apparent Ka for the same effect of GTP was 0.2 microM. The effect of GDP was shown not to be due to GTP formed by putative transphosphorylation reaction(s) when ATP was present in the assay as substrate. In membranes not preactivated with GuoPP[NH]P, GDP both competitively inhibited GuoPP[NH]P stimulation of adenylyl cyclase (Ki 0.10 microM) and supported stimulation of cyclizing activity (apparent Ka 0.10 microM) by glucagon. These effects of GDP occurred in the absence of added GTP and in the absence of sufficient formation of GTP by putative transphosphorylation reaction(s) to account for them. It is concluded that two levels of regulation of liver adenylyl cyclase (cyclizing) activity must exit. One level is termed "receptor regulation"; it depends on occupancy of a receptor-related R site by nucleotide and is specific for either GDP or GTP. The second level of regulation is termed "GTPase regulation"; it is inhibited by GDP, depends on both GTP and GTPase, and accounts for activation of cyclizing activity by nonhydrolyzable analogs of GTP. The data suggest that both levels of regulation coexist and may synergize, one mediating responses to stimuli external to the cell (receptor regulation) and the other mediating stimuli of intracellular origin (GTPase regulation).

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D006150 Guanine Nucleotides Guanine Nucleotide,Guanosine Phosphates,Nucleotide, Guanine,Nucleotides, Guanine,Phosphates, Guanosine
D006153 Guanosine Diphosphate A guanine nucleotide containing two phosphate groups esterified to the sugar moiety. GDP,Guanosine 5'-Diphosphate,Guanosine 5'-Trihydrogen Diphosphate,5'-Diphosphate, Guanosine,5'-Trihydrogen Diphosphate, Guanosine,Diphosphate, Guanosine,Diphosphate, Guanosine 5'-Trihydrogen,Guanosine 5' Diphosphate,Guanosine 5' Trihydrogen Diphosphate
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D006165 Guanylyl Imidodiphosphate A non-hydrolyzable analog of GTP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It binds tightly to G-protein in the presence of Mg2+. The nucleotide is a potent stimulator of ADENYLYL CYCLASES. GMP-PNP,GMP-P(NH)P,Gpp(NH)p,Guanosine 5'-(Beta,Gamma-Imido)Triphosphate,Guanyl-5'-Imidodiphosphate,P(NH)PPG,Guanyl 5' Imidodiphosphate,Imidodiphosphate, Guanylyl
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

R Iyengar, and L Birnbaumer
October 1979, Biochemical Society transactions,
R Iyengar, and L Birnbaumer
August 1997, Biochemical and biophysical research communications,
R Iyengar, and L Birnbaumer
January 1991, Pharmacology & therapeutics,
R Iyengar, and L Birnbaumer
April 1990, The Journal of pharmacology and experimental therapeutics,
R Iyengar, and L Birnbaumer
November 2001, The Journal of biological chemistry,
R Iyengar, and L Birnbaumer
January 1981, Advances in cyclic nucleotide research,
R Iyengar, and L Birnbaumer
January 1994, Alcohol and alcoholism (Oxford, Oxfordshire). Supplement,
Copied contents to your clipboard!