Expression and knockdown analysis of glucose phosphate isomerase in chicken primordial germ cells. 2012

Deivendran Rengaraj, and Sang In Lee, and Min Yoo, and Tae Hyun Kim, and Gwonhwa Song, and Jae Yong Han
WCU Biomodulation Major, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea.

Glucose is an important monosaccharide required to generate energy in all cells. After entry into cells, glucose is phosphorylated to glucose-6-phosphate and then transformed into glycogen or metabolized to produce energy. Glucose phosphate isomerase (GPI) catalyzes the reversible isomerization of glucose-6-phosphate and fructose-6-phosphate. Without GPI activity or fructose-6-phosphate, many steps of glucose metabolism would not occur. The requirement for GPI activity for normal functioning of primordial germ cells (PGCs) needs to be identified. In this study, we first examined the expression of chicken GPI during early embryonic development and germ cell development. GPI expression was strongly and ubiquitously detected in chicken early embryos and embryonic tissues at Embryonic Day 6.5 (E6.5). Continuous GPI expression was detected in PGCs and germ cells of both sexes during gonadal development. Specifically, GPI expression was stronger in male germ cells than in female germ cells during embryonic development and the majority of post-hatching development. Then, we used siRNA-1499 to knock down GPI expression in PGCs. siRNA-1499 caused an 85% knockdown in GPI, and PGC proliferation was also affected 48 h after transfection. We further examined the knockdown effects on 28 genes related to the glycolysis/gluconeogenesis pathway and the endogenous glucose level in chicken PGCs. Among genes related to glycolysis/gluconeogenesis, 20 genes showed approximately 3-fold lower expression, 4 showed approximately 10-fold lower, and 2 showed approximately 100-fold lower expression in knockdown PGCs. The endogenous glucose level was significantly reduced in knockdown PGCs. We conclude that the GPI gene is crucial for maintaining glycolysis and supplying energy to developing PGCs.

UI MeSH Term Description Entries
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D005260 Female Females
D005854 Germ Cells The reproductive cells in multicellular organisms at various stages during GAMETOGENESIS. Gamete,Gametes,Germ-Line Cells,Germ Line,Cell, Germ,Cell, Germ-Line,Cells, Germ,Cells, Germ-Line,Germ Cell,Germ Line Cells,Germ Lines,Germ-Line Cell
D005956 Glucose-6-Phosphate Isomerase An aldose-ketose isomerase that catalyzes the reversible interconversion of glucose 6-phosphate and fructose 6-phosphate. In prokaryotic and eukaryotic organisms it plays an essential role in glycolytic and gluconeogenic pathways. In mammalian systems the enzyme is found in the cytoplasm and as a secreted protein. This secreted form of glucose-6-phosphate isomerase has been referred to as autocrine motility factor or neuroleukin, and acts as a cytokine which binds to the AUTOCRINE MOTILITY FACTOR RECEPTOR. Deficiency of the enzyme in humans is an autosomal recessive trait, which results in CONGENITAL NONSPHEROCYTIC HEMOLYTIC ANEMIA. Glucosephosphate Isomerase,Phosphoglucose Isomerase,Phosphohexose Isomerase,Autocrine Motility Factor,Isomerase, Glucose 6 Phosphate,Neuroleukin,Tumor Autocrine Motility Factor,Tumor-Cell Autocrine Motility Factor,Factor, Autocrine Motility,Glucose 6 Phosphate Isomerase,Isomerase, Glucose-6-Phosphate,Isomerase, Glucosephosphate,Isomerase, Phosphoglucose,Isomerase, Phosphohexose,Motility Factor, Autocrine,Tumor Cell Autocrine Motility Factor
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof

Related Publications

Deivendran Rengaraj, and Sang In Lee, and Min Yoo, and Tae Hyun Kim, and Gwonhwa Song, and Jae Yong Han
June 2008, Cytotechnology,
Deivendran Rengaraj, and Sang In Lee, and Min Yoo, and Tae Hyun Kim, and Gwonhwa Song, and Jae Yong Han
June 2013, Molecular biotechnology,
Deivendran Rengaraj, and Sang In Lee, and Min Yoo, and Tae Hyun Kim, and Gwonhwa Song, and Jae Yong Han
July 2023, Scientific reports,
Deivendran Rengaraj, and Sang In Lee, and Min Yoo, and Tae Hyun Kim, and Gwonhwa Song, and Jae Yong Han
March 2015, Cellular & molecular biology letters,
Deivendran Rengaraj, and Sang In Lee, and Min Yoo, and Tae Hyun Kim, and Gwonhwa Song, and Jae Yong Han
October 2007, Cell and tissue research,
Deivendran Rengaraj, and Sang In Lee, and Min Yoo, and Tae Hyun Kim, and Gwonhwa Song, and Jae Yong Han
December 2022, Development, growth & differentiation,
Deivendran Rengaraj, and Sang In Lee, and Min Yoo, and Tae Hyun Kim, and Gwonhwa Song, and Jae Yong Han
June 1989, Journal of neuroscience research,
Deivendran Rengaraj, and Sang In Lee, and Min Yoo, and Tae Hyun Kim, and Gwonhwa Song, and Jae Yong Han
May 2016, Biology open,
Deivendran Rengaraj, and Sang In Lee, and Min Yoo, and Tae Hyun Kim, and Gwonhwa Song, and Jae Yong Han
August 2016, Animal reproduction science,
Deivendran Rengaraj, and Sang In Lee, and Min Yoo, and Tae Hyun Kim, and Gwonhwa Song, and Jae Yong Han
January 2024, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!