Antimicrobial biocompatible bioscaffolds for orthopaedic implants. 2014

Ammar T Qureshi, and Lekeith Terrell, and W Todd Monroe, and Vinod Dasa, and Marlene E Janes, and Jeffrey M Gimble, and Daniel J Hayes
Department of Agricultural and Biological Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA, USA.

Nationally, nearly 1.5 million patients in the USA suffer from ailments requiring bone grafts and hip and other joint replacements. Infections following internal fixation in orthopaedic trauma can cause osteomyelitis in 22-66% of cases and, if uncontrolled, the mortality rate can be as high as 2%. We characterize a procedure for the synthesis of antimicrobial and biocompatible poly-l-lactic acid (PLLA) and poly-ethyleneglycol (PEG) bioscaffolds designed to degrade and absorb at a controlled rate. The bioscaffold architecture aims to provide a suitable substrate for the controlled release of silver nanoparticles (SNPs) to reduce bacterial growth and to aid the proliferation of human adipose-derived stem cells (hASCs) for tissue-engineering applications. The fabricated bioscaffolds were characterized by scanning transmission microscope (SEM) and it showed that the addition of tncreasing concentrations of SNPs results in the formation of dendritic porous channels perpendicular to the axis of precipitation. The antimicrobial properties of these porous bioscaffolds were tested according to a modified ISO 22196 standard across varying concentrations of biomass-mediated SNPs to determine an efficacious antimicrobial concentration. The bioscaffolds reduced the Staphylococcus aureus and Escherichia coli viable colony-forming units by 98.85% and 99.9%, respectively, at an antimicrobial SNPs concentration of 2000 ppm. Human ASCs were seeded on bioscaffolds and cultured in vitro for 20 days to study the effect of SNPs concentration on the viability of cells. SEM analysis and the metabolic activity-based fluorescent dye, AlamarBlue®, demonstrated the growth of cells on the efficacious antimicrobial bioscaffolds. The biocompatibility of in vitro leached silver, quantified by inductively coupled plasma optical emission spectroscopy (ICP-OES), proved non-cytotoxic when tested against hASCs, as evaluated by MTT assay.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D009985 Orthopedics A specialty which utilizes medical, surgical, and physical methods to treat and correct deformities, diseases, and injuries to the skeletal system, its articulations, and associated structures.
D011091 Polyesters Polymers of organic acids and alcohols, with ester linkages--usually polyethylene terephthalate; can be cured into hard plastic, films or tapes, or fibers which can be woven into fabrics, meshes or velours. Polyester
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000273 Adipose Tissue Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white. Fatty Tissue,Body Fat,Fat Pad,Fat Pads,Pad, Fat,Pads, Fat,Tissue, Adipose,Tissue, Fatty
D000890 Anti-Infective Agents Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection. Anti-Infective Agent,Anti-Microbial Agent,Antimicrobial Agent,Microbicide,Microbicides,Anti-Microbial Agents,Antiinfective Agents,Antimicrobial Agents,Agent, Anti-Infective,Agent, Anti-Microbial,Agent, Antimicrobial,Agents, Anti-Infective,Agents, Anti-Microbial,Agents, Antiinfective,Agents, Antimicrobial,Anti Infective Agent,Anti Infective Agents,Anti Microbial Agent,Anti Microbial Agents
D001672 Biocompatible Materials Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function. Biomaterials,Bioartificial Materials,Hemocompatible Materials,Bioartificial Material,Biocompatible Material,Biomaterial,Hemocompatible Material,Material, Bioartificial,Material, Biocompatible,Material, Hemocompatible

Related Publications

Ammar T Qureshi, and Lekeith Terrell, and W Todd Monroe, and Vinod Dasa, and Marlene E Janes, and Jeffrey M Gimble, and Daniel J Hayes
May 2010, The Journal of bone and joint surgery. American volume,
Ammar T Qureshi, and Lekeith Terrell, and W Todd Monroe, and Vinod Dasa, and Marlene E Janes, and Jeffrey M Gimble, and Daniel J Hayes
January 2020, Journal of bone and joint infection,
Ammar T Qureshi, and Lekeith Terrell, and W Todd Monroe, and Vinod Dasa, and Marlene E Janes, and Jeffrey M Gimble, and Daniel J Hayes
July 2018, Journal of materials science. Materials in medicine,
Ammar T Qureshi, and Lekeith Terrell, and W Todd Monroe, and Vinod Dasa, and Marlene E Janes, and Jeffrey M Gimble, and Daniel J Hayes
July 2021, Chemical engineering journal (Lausanne, Switzerland : 1996),
Ammar T Qureshi, and Lekeith Terrell, and W Todd Monroe, and Vinod Dasa, and Marlene E Janes, and Jeffrey M Gimble, and Daniel J Hayes
December 2006, The Journal of bone and joint surgery. American volume,
Ammar T Qureshi, and Lekeith Terrell, and W Todd Monroe, and Vinod Dasa, and Marlene E Janes, and Jeffrey M Gimble, and Daniel J Hayes
August 1991, Biomaterials,
Ammar T Qureshi, and Lekeith Terrell, and W Todd Monroe, and Vinod Dasa, and Marlene E Janes, and Jeffrey M Gimble, and Daniel J Hayes
November 2017, Materials (Basel, Switzerland),
Ammar T Qureshi, and Lekeith Terrell, and W Todd Monroe, and Vinod Dasa, and Marlene E Janes, and Jeffrey M Gimble, and Daniel J Hayes
January 1969, The American journal of orthopedic surgery,
Ammar T Qureshi, and Lekeith Terrell, and W Todd Monroe, and Vinod Dasa, and Marlene E Janes, and Jeffrey M Gimble, and Daniel J Hayes
April 1978, Archives of otolaryngology (Chicago, Ill. : 1960),
Ammar T Qureshi, and Lekeith Terrell, and W Todd Monroe, and Vinod Dasa, and Marlene E Janes, and Jeffrey M Gimble, and Daniel J Hayes
April 2022, Medicina (Kaunas, Lithuania),
Copied contents to your clipboard!