Receptor-specific regulation of ERK1/2 activation by members of the "free fatty acid receptor" family. 2012

Sandra Seljeset, and Sandra Siehler
Novartis Institutes for BioMedical Research Basel, Center for Proteomic Chemistry, Basel, Switzerland.

BACKGROUND The "free fatty acid receptors" (FFARs) GPR40, GPR41, and GPR43 regulate various physiological homeostases, and are all linked to activation of extracellular signal-regulated kinases (ERK)1/2. OBJECTIVE Investigation of coupling of FFARs to two other mitogen-activated protein kinases (MAPKs) sometimes regulated by G protein-coupled receptors (GPCRs), c-Jun N-terminal kinase (JNK) and p38MAPK, and characterization of signaling proteins involved in the regulation of FFAR-mediated ERK1/2 activation. METHODS FFARs were recombinantly expressed, cells challenged with the respective agonist, and MAPK activation quantitatively determined using an AlphaScreen SureFire assay. Inhibitors for signaling proteins were utilized to characterize ERK1/2 pathways. RESULTS Propionate-stimulated GPR41 strongly coupled to ERK1/2 activation, while the coupling of linoleic acid-activated GPR40 and acetate-activated GPR43 was weaker. JNK and p38MAPK were weakly activated by FFARs. All three receptors activated ERK1/2 fully or partially via G(i/o) and Rac. PI3K was relevant for GPR40- and GPR41-mediated ERK1/2 activation, and Src was essential for GPR40- and GPR43-induced activation. Raf-1 was not involved in the GPR43-triggered activation. CONCLUSIONS The results demonstrate a novel role of Rac in GPCR-mediated ERK1/2 signaling, and that GPCRs belonging to the same family can regulate ERK1/2 activation by different receptor-specific mechanisms.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005230 Fatty Acids, Nonesterified FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form. Fatty Acids, Free,Free Fatty Acid,Free Fatty Acids,NEFA,Acid, Free Fatty,Acids, Free Fatty,Acids, Nonesterified Fatty,Fatty Acid, Free,Nonesterified Fatty Acids
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO
D043562 Receptors, G-Protein-Coupled The largest family of cell surface receptors involved in SIGNAL TRANSDUCTION. They share a common structure and signal through HETEROTRIMERIC G-PROTEINS. G Protein Coupled Receptor,G-Protein-Coupled Receptor,G-Protein-Coupled Receptors,G Protein Coupled Receptors,Receptor, G-Protein-Coupled,Receptors, G Protein Coupled

Related Publications

Sandra Seljeset, and Sandra Siehler
January 2022, Developmental and comparative immunology,
Sandra Seljeset, and Sandra Siehler
December 1997, Proceedings of the National Academy of Sciences of the United States of America,
Sandra Seljeset, and Sandra Siehler
January 2014, PloS one,
Sandra Seljeset, and Sandra Siehler
August 2020, Science translational medicine,
Sandra Seljeset, and Sandra Siehler
January 2015, Current drug targets,
Sandra Seljeset, and Sandra Siehler
October 1998, FEBS letters,
Sandra Seljeset, and Sandra Siehler
January 2014, Frontiers in endocrinology,
Sandra Seljeset, and Sandra Siehler
June 2004, Heart, lung & circulation,
Sandra Seljeset, and Sandra Siehler
December 2017, Journal of autoimmunity,
Copied contents to your clipboard!