Phase separation and fluctuations in mixtures of a saturated and an unsaturated phospholipid. 2012

James A Svetlovics, and Sterling A Wheaten, and Paulo F Almeida
Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA.

We describe quantitatively the interactions in a mixture of a saturated and an unsaturated phospholipid, and their consequences to the phase behavior at macroscopic and microscopic levels. This type of lipid-lipid interaction is fundamental in determining the organization and physical behavior of biological membranes. Mixtures of dipalmitoylphosphatidylcholine (DPPC) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) are examined in detail by multiple experimental approaches (differential scanning calorimetry (DSC), fluorescence resonance energy transfer, and confocal fluorescence microscopy) in combination with Monte Carlo simulations in a lattice. The interactions between all possible pairs of lipid species and states are determined by matching the heat capacity calculated through Monte Carlo simulations to that measured experimentally by DSC. Only for one other lipid system, a mixture between two saturated phosphatidylcholines, is a similar quantitative description available. The interactions in the two systems and different representations used to model them are compared. Phase separation occurs in DPPC/POPC at about the center of the phase diagram mapped by DSC, but not at all compositions and temperatures in the coexistence region. Close to the extremes of composition, the phase behavior is best described by large fluctuations. At the heat capacity maxima in the mixtures, the domain size distributions change remarkably; large domains disappear and cooperative fluctuations increase.

UI MeSH Term Description Entries
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D005782 Gels Colloids with a solid continuous phase and liquid as the dispersed phase; gels may be unstable when, due to temperature or other cause, the solid phase liquefies; the resulting colloid is called a sol.
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D015060 1,2-Dipalmitoylphosphatidylcholine Synthetic phospholipid used in liposomes and lipid bilayers to study biological membranes. It is also a major constituent of PULMONARY SURFACTANTS. Dipalmitoyllecithin,1,2-Dihexadecyl-sn-Glycerophosphocholine,1,2-Dipalmitoyl-Glycerophosphocholine,Dipalmitoyl Phosphatidylcholine,Dipalmitoylglycerophosphocholine,Dipalmitoylphosphatidylcholine,1,2 Dihexadecyl sn Glycerophosphocholine,1,2 Dipalmitoyl Glycerophosphocholine,1,2 Dipalmitoylphosphatidylcholine,Phosphatidylcholine, Dipalmitoyl
D044367 Phase Transition A change of a substance from one form or state to another. Gas-Liquid-Solid Phase Transitions,Sol-Gel Phase Transition,Gas Liquid Solid Phase Transitions,Gas-Liquid-Solid Phase Transition,Phase Transition, Gas-Liquid-Solid,Phase Transition, Sol-Gel,Phase Transitions,Phase Transitions, Gas-Liquid-Solid,Phase Transitions, Sol-Gel,Sol Gel Phase Transition,Sol-Gel Phase Transitions,Transition, Gas-Liquid-Solid Phase,Transition, Sol-Gel Phase,Transitions, Gas-Liquid-Solid Phase,Transitions, Sol-Gel Phase
D053835 Unilamellar Liposomes Single membrane vesicles, generally made of PHOSPHOLIPIDS. Monolayer Liposomes,Monolayer Vesicles,Unilamellar Vesicles,Liposomes, Monolayer,Liposomes, Unilamellar,Vesicles, Monolayer,Vesicles, Unilamellar

Related Publications

James A Svetlovics, and Sterling A Wheaten, and Paulo F Almeida
March 1988, Biochemistry,
James A Svetlovics, and Sterling A Wheaten, and Paulo F Almeida
January 2005, The Journal of chemical physics,
James A Svetlovics, and Sterling A Wheaten, and Paulo F Almeida
July 2019, The journal of physical chemistry. B,
James A Svetlovics, and Sterling A Wheaten, and Paulo F Almeida
December 2010, Biointerphases,
James A Svetlovics, and Sterling A Wheaten, and Paulo F Almeida
October 1963, Biochimica et biophysica acta,
James A Svetlovics, and Sterling A Wheaten, and Paulo F Almeida
September 1989, Biochimica et biophysica acta,
James A Svetlovics, and Sterling A Wheaten, and Paulo F Almeida
March 2010, Biophysical journal,
James A Svetlovics, and Sterling A Wheaten, and Paulo F Almeida
January 2007, Methods in molecular biology (Clifton, N.J.),
James A Svetlovics, and Sterling A Wheaten, and Paulo F Almeida
September 1969, Journal of chromatography,
James A Svetlovics, and Sterling A Wheaten, and Paulo F Almeida
January 1989, Biochemistry,
Copied contents to your clipboard!