Covalent binding of reactive estrogen metabolites to microtubular protein as a possible mechanism of aneuploidy induction and neoplastic cell transformation. 1990

B Epe, and U Harttig, and H Stopper, and M Metzler
Institute of Pharmacology and Toxicology, University of Würzburg, Federal Republic of Germany.

Neoplastic cell transformation induced by estrogens and some other carcinogens such as benzene appears to involve the induction of mitotic aneuploidy rather than DNA damage and point mutations. As metabolic activation may also play an important role in the mechanism of carcinogenesis of these nongenotoxic compounds, we have studied the interaction of reactive quinone metabolites of various estrogens and of benzene with the major microtubular protein, tubulin, in a cell-free system. Covalent binding of the radioactively labeled metabolites to the alpha- and beta-subunit of tubulin was found to depend on the structure of the metabolite. When the adducted tubulins were tested in vitro for their ability to polymerize to microtubules, inhibition of microtubule assembly was observed in every case, although to varying extents. It is proposed that the formation of covalent tubulin adducts may impair the formation of mitotic spindles and thus contribute to chromosomal nondisjunction and aneuploidy induction.

UI MeSH Term Description Entries
D008868 Microtubule Proteins Proteins found in the microtubules. Proteins, Microtubule
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D004967 Estrogens Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Estrogen,Estrogen Effect,Estrogen Effects,Estrogen Receptor Agonists,Estrogenic Agents,Estrogenic Compounds,Estrogenic Effect,Estrogenic Effects,Agents, Estrogenic,Agonists, Estrogen Receptor,Compounds, Estrogenic,Effects, Estrogen,Effects, Estrogenic,Receptor Agonists, Estrogen
D000782 Aneuploidy The chromosomal constitution of cells which deviate from the normal by the addition or subtraction of CHROMOSOMES, chromosome pairs, or chromosome fragments. In a normally diploid cell (DIPLOIDY) the loss of a chromosome pair is termed nullisomy (symbol: 2N-2), the loss of a single chromosome is MONOSOMY (symbol: 2N-1), the addition of a chromosome pair is tetrasomy (symbol: 2N+2), the addition of a single chromosome is TRISOMY (symbol: 2N+1). Aneuploid,Aneuploid Cell,Aneuploid Cells,Aneuploidies,Aneuploids,Cell, Aneuploid,Cells, Aneuploid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014404 Tubulin A microtubule subunit protein found in large quantities in mammalian brain. It has also been isolated from SPERM FLAGELLUM; CILIA; and other sources. Structurally, the protein is a dimer with a molecular weight of approximately 120,000 and a sedimentation coefficient of 5.8S. It binds to COLCHICINE; VINCRISTINE; and VINBLASTINE. alpha-Tubulin,beta-Tubulin,delta-Tubulin,epsilon-Tubulin,gamma-Tubulin,alpha Tubulin,beta Tubulin,delta Tubulin,epsilon Tubulin,gamma Tubulin
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

B Epe, and U Harttig, and H Stopper, and M Metzler
August 1983, Cancer research,
B Epe, and U Harttig, and H Stopper, and M Metzler
March 1996, BioEssays : news and reviews in molecular, cellular and developmental biology,
B Epe, and U Harttig, and H Stopper, and M Metzler
July 2016, Molecular and cellular endocrinology,
B Epe, and U Harttig, and H Stopper, and M Metzler
March 1980, Biochimica et biophysica acta,
B Epe, and U Harttig, and H Stopper, and M Metzler
January 1982, Journal of cancer research and clinical oncology,
B Epe, and U Harttig, and H Stopper, and M Metzler
November 2009, Chemistry & biodiversity,
B Epe, and U Harttig, and H Stopper, and M Metzler
June 1985, Biochemical pharmacology,
B Epe, and U Harttig, and H Stopper, and M Metzler
April 2023, Angewandte Chemie (International ed. in English),
B Epe, and U Harttig, and H Stopper, and M Metzler
January 2010, Regulatory toxicology and pharmacology : RTP,
B Epe, and U Harttig, and H Stopper, and M Metzler
July 2010, Bioanalysis,
Copied contents to your clipboard!