Blood pressure and renin-angiotensin system resetting in transgenic rats with elevated plasma Val5-angiotensinogen. 2012

Jürgen Bohlender, and Michael Bader, and Joël Ménard, and Jürg Nussberger
Division of Angiology and Hypertension, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.

OBJECTIVE Increases in plasma angiotensinogen (Ang-N) due to genetic polymorphisms or pharmacological stimuli like estrogen have been associated with a blood pressure (BP) rise, increased salt sensitivity and cardiovascular risk. The relationship between Ang-N, the resetting of the renin-angiotensin system, and BP still remains unclear. Angiotensin (Ang) II-induced genetic hypertension should respond to lisinopril treatment. METHODS A new transgenic rat line (TGR) with hepatic overexpression of native (rat) Ang-N was established to study high plasma Ang-N. The transgene contained a mutation producing Val(5)-Ang-II, which was measured separately from nontransgenic Ile-Ang-II in plasma and renal tissue. RESULTS Male homozygous TGR had increased plasma Ang-N (~20-fold), systolic BP (ΔBP+26 mmHg), renin activity (~2-fold), renin activity/concentration (5-fold), total Ang-II (~2-fold, kidney 1.7-fold) but decreased plasma renin concentrations (-46%, kidney -85%) and Ile(5)-Ang-I and II (-93%, -94%) vs. controls. Heterozygous TGR exhibited ~10-fold higher plasma Ang-N and 17 mmHg ΔBP. Lisinopril decreased their SBP (-23 vs. -13 mmHg in controls), kidney Ang-II/I (~3-fold vs. ~2-fold) and Ile(5)-Ang-II (-70 vs. -40%), and increased kidney renin and Ile(5)-Ang-I (>2.5-fold vs. <2.5-fold). Kidney Ang-II remained higher and renin lower in TGR compared with controls. CONCLUSIONS High plasma Ang-N increases plasma and kidney Ang-II levels, and amplifies the plasma and renal Ang-II response to a given change in renal renin secretion. This enzyme-kinetic amplification dominates over the Ang-II mediated feedback reduction of renin secretion. High Ang-N levels thus facilitate hypertension via small increases of Ang II and may influence the effectiveness of renin-angiotensin system inhibitors.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D012084 Renin-Angiotensin System A BLOOD PRESSURE regulating system of interacting components that include RENIN; ANGIOTENSINOGEN; ANGIOTENSIN CONVERTING ENZYME; ANGIOTENSIN I; ANGIOTENSIN II; and angiotensinase. Renin, an enzyme produced in the kidney, acts on angiotensinogen, an alpha-2 globulin produced by the liver, forming ANGIOTENSIN I. Angiotensin-converting enzyme, contained in the lung, acts on angiotensin I in the plasma converting it to ANGIOTENSIN II, an extremely powerful vasoconstrictor. Angiotensin II causes contraction of the arteriolar and renal VASCULAR SMOOTH MUSCLE, leading to retention of salt and water in the KIDNEY and increased arterial blood pressure. In addition, angiotensin II stimulates the release of ALDOSTERONE from the ADRENAL CORTEX, which in turn also increases salt and water retention in the kidney. Angiotensin-converting enzyme also breaks down BRADYKININ, a powerful vasodilator and component of the KALLIKREIN-KININ SYSTEM. Renin-Angiotensin-Aldosterone System,Renin Angiotensin Aldosterone System,Renin Angiotensin System,System, Renin-Angiotensin,System, Renin-Angiotensin-Aldosterone
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000808 Angiotensinogen An alpha-globulin of about 453 amino acids, depending on the species. It is produced by the liver in response to lowered blood pressure and secreted into blood circulation. Angiotensinogen is the inactive precursor of the ANGIOTENSINS produced in the body by successive enzyme cleavages. Cleavage of angiotensinogen by RENIN yields the decapeptide ANGIOTENSIN I. Further cleavage of angiotensin I (by ANGIOTENSIN CONVERTING ENZYME) yields the potent vasoconstrictor octapeptide ANGIOTENSIN II; and then, via other enzymes, other angiotensins also involved in the hemodynamic-regulating RENIN-ANGIOTENSIN SYSTEM. Hypertensinogen,Renin-Substrate,SERPINA8,Proangiotensin,Renin Substrate Tetradecapeptide,Serpin A8,Renin Substrate,Tetradecapeptide, Renin Substrate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Jürgen Bohlender, and Michael Bader, and Joël Ménard, and Jürg Nussberger
June 1993, The Journal of biological chemistry,
Jürgen Bohlender, and Michael Bader, and Joël Ménard, and Jürg Nussberger
July 1990, Proceedings of the National Academy of Sciences of the United States of America,
Jürgen Bohlender, and Michael Bader, and Joël Ménard, and Jürg Nussberger
February 2001, American journal of physiology. Regulatory, integrative and comparative physiology,
Jürgen Bohlender, and Michael Bader, and Joël Ménard, and Jürg Nussberger
March 2006, Hypertension (Dallas, Tex. : 1979),
Jürgen Bohlender, and Michael Bader, and Joël Ménard, and Jürg Nussberger
February 1996, Pediatric nephrology (Berlin, Germany),
Jürgen Bohlender, and Michael Bader, and Joël Ménard, and Jürg Nussberger
February 2009, Hypertension (Dallas, Tex. : 1979),
Jürgen Bohlender, and Michael Bader, and Joël Ménard, and Jürg Nussberger
October 1999, Circulation,
Jürgen Bohlender, and Michael Bader, and Joël Ménard, and Jürg Nussberger
December 2012, Journal of applied physiology (Bethesda, Md. : 1985),
Jürgen Bohlender, and Michael Bader, and Joël Ménard, and Jürg Nussberger
December 1993, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
Jürgen Bohlender, and Michael Bader, and Joël Ménard, and Jürg Nussberger
February 2000, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!