Auditory change detection by a single neuron in an insect. 2012

Johannes Schul, and Anne M Mayo, and Jeffrey D Triblehorn
Biological Sciences, University of Missouri, 207 Tucker Hall, Columbia, MO 65211, USA. schulj@missouri.edu

The detection of novel signals in the auditory scene is an elementary task of any hearing system. In Neoconocephalus katydids, a primary auditory interneuron (TN-1) with broad spectral sensitivity, responded preferentially to rare deviant pulses (7 pulses/s repetition rate) embedded among common standard pulses (140 pulses/s repetition rate). Eliminating inhibitory input did not affect the detection of the deviant pulses. Detection thresholds for deviant pulses increased significantly with increasing amplitude of standard pulses. Responses to deviant pulses occurred when the carrier frequencies of deviant and standard were sufficiently different, both when the deviant had a higher or lower carrier frequency than the standard. Recordings from receptor neurons revealed that TN-1 responses to the deviant pulses did not depend on the population response strength of the receptors, but on the distribution of the receptor cell activity. TN-1 responses to the deviant pulse occurred only when the standard and deviant pulses were transmitted by different groups of receptor cells. TN-1 responses parallel stimulus specific adaptation (SSA) described in mammalian auditory system. The results support the hypothesis that the mechanisms underlying SSA and change-detection are located in the TN-1 dendrite, rather than the receptor cells.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009987 Orthoptera An order of insects comprising two suborders: Caelifera and Ensifera. They consist of GRASSHOPPERS, locusts, and crickets (GRYLLIDAE). Caelifera,Ensifera,Caeliferas,Ensiferas,Orthopteras
D005072 Evoked Potentials, Auditory The electric response evoked in the CEREBRAL CORTEX by ACOUSTIC STIMULATION or stimulation of the AUDITORY PATHWAYS. Auditory Evoked Potentials,Auditory Evoked Response,Auditory Evoked Potential,Auditory Evoked Responses,Evoked Potential, Auditory,Evoked Response, Auditory,Evoked Responses, Auditory,Potentials, Auditory Evoked
D005260 Female Females
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001303 Auditory Cortex The region of the cerebral cortex that receives the auditory radiation from the MEDIAL GENICULATE BODY. Brodmann Area 41,Brodmann Area 42,Brodmann's Area 41,Heschl Gyrus,Heschl's Gyrus,Auditory Area,Heschl's Convolutions,Heschl's Gyri,Primary Auditory Cortex,Temporal Auditory Area,Transverse Temporal Gyri,Area 41, Brodmann,Area 41, Brodmann's,Area 42, Brodmann,Area, Auditory,Area, Temporal Auditory,Auditory Areas,Auditory Cortex, Primary,Brodmanns Area 41,Cortex, Auditory,Cortex, Primary Auditory,Gyrus, Heschl,Gyrus, Heschl's,Gyrus, Transverse Temporal,Heschl Convolutions,Heschl Gyri,Heschls Convolutions,Heschls Gyri,Heschls Gyrus,Primary Auditory Cortices,Temporal Auditory Areas,Temporal Gyrus, Transverse,Transverse Temporal Gyrus
D001309 Auditory Threshold The audibility limit of discriminating sound intensity and pitch. Auditory Thresholds,Threshold, Auditory,Thresholds, Auditory

Related Publications

Johannes Schul, and Anne M Mayo, and Jeffrey D Triblehorn
July 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Johannes Schul, and Anne M Mayo, and Jeffrey D Triblehorn
July 2018, Journal of neurophysiology,
Johannes Schul, and Anne M Mayo, and Jeffrey D Triblehorn
October 2006, Current biology : CB,
Johannes Schul, and Anne M Mayo, and Jeffrey D Triblehorn
January 2016, Advances in experimental medicine and biology,
Johannes Schul, and Anne M Mayo, and Jeffrey D Triblehorn
August 2007, Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology,
Johannes Schul, and Anne M Mayo, and Jeffrey D Triblehorn
June 1982, Science (New York, N.Y.),
Johannes Schul, and Anne M Mayo, and Jeffrey D Triblehorn
December 2010, Journal of biosciences,
Johannes Schul, and Anne M Mayo, and Jeffrey D Triblehorn
January 2006, Neuroscience,
Johannes Schul, and Anne M Mayo, and Jeffrey D Triblehorn
January 2013, Current biology : CB,
Johannes Schul, and Anne M Mayo, and Jeffrey D Triblehorn
April 2009, Biological psychology,
Copied contents to your clipboard!