Normal muscle glucose uptake in mice deficient in muscle GLUT4. 2012

Barbara C Fam, and Laura J Rose, and Rebecca Sgambellone, and Zheng Ruan, and Joseph Proietto, and Sofianos Andrikopoulos
Department of Medicine (Austin Health), Austin Hospital, University of Melbourne, Heidelberg, Victoria 3084, Australia. bcfam@unimelb.edu.au

Skeletal muscle insulin resistance is a major characteristic underpinning type 2 diabetes. Impairments in the insulin responsiveness of the glucose transporter, Glut4 (Slc2a4), have been suggested to be a contributing factor to this disturbance. We have produced muscle-specific Glut4 knockout (KO) mice using Cre/LoxP technology on a C57BL6/J background and shown undetectable levels of GLUT4 in both skeletal muscle and heart. Our aim was to determine whether complete deletion of muscle GLUT4 does in fact lead to perturbations in glucose homoeostasis. Glucose tolerance, glucose turnover and 2-deoxyglucose uptake into muscle and fat under basal and insulin-stimulated conditions were assessed in 12-week-old KO and control mice using the oral glucose tolerance test (OGTT) and hyperinsulinaemic/euglycaemic clamp respectively. KO mice weighed ~17% less and had significantly heavier hearts compared with control mice. Basally, plasma glucose and plasma insulin were significantly lower in the KO compared with control mice, which conferred normal glucose tolerance. Despite the lack of GLUT4 in the KO mouse muscle, glucose uptake was not impaired in skeletal muscle but was reduced in heart under insulin-stimulated conditions. Neither GLUT1 nor GLUT12 protein levels were altered in the skeletal muscle or heart tissue of our KO mice. High-fat feeding did not alter glucose tolerance in the KO mice but led to elevated plasma insulin levels during the glucose tolerance test. Our study demonstrates that deletion of muscle GLUT4 does not adversely affect glucose disposal and glucose tolerance and that compensation from other transporters may contribute to this unaltered homoeostasis of glucose.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D004041 Dietary Fats Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados. Fats, Dietary,Dietary Fat,Fat, Dietary
D005260 Female Females
D005801 Genes, Homeobox Genes that encode highly conserved TRANSCRIPTION FACTORS that control positional identity of cells (BODY PATTERNING) and MORPHOGENESIS throughout development. Their sequences contain a 180 nucleotide sequence designated the homeobox, so called because mutations of these genes often results in homeotic transformations, in which one body structure replaces another. The proteins encoded by homeobox genes are called HOMEODOMAIN PROTEINS. Genes, Homeotic,Homeobox Sequence,Homeotic Genes,Genes, Homeo Box,Homeo Box,Homeo Box Sequence,Homeo Boxes,Homeobox,Homeoboxes,Hox Genes,Sequence, Homeo Box,Gene, Homeo Box,Gene, Homeobox,Gene, Homeotic,Gene, Hox,Genes, Hox,Homeo Box Gene,Homeo Box Genes,Homeo Box Sequences,Homeobox Gene,Homeobox Genes,Homeobox Sequences,Homeotic Gene,Hox Gene,Sequence, Homeobox,Sequences, Homeo Box,Sequences, Homeobox
D005951 Glucose Tolerance Test A test to determine the ability of an individual to maintain HOMEOSTASIS of BLOOD GLUCOSE. It includes measuring blood glucose levels in a fasting state, and at prescribed intervals before and after oral glucose intake (75 or 100 g) or intravenous infusion (0.5 g/kg). Intravenous Glucose Tolerance,Intravenous Glucose Tolerance Test,OGTT,Oral Glucose Tolerance,Oral Glucose Tolerance Test,Glucose Tolerance Tests,Glucose Tolerance, Oral
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Barbara C Fam, and Laura J Rose, and Rebecca Sgambellone, and Zheng Ruan, and Joseph Proietto, and Sofianos Andrikopoulos
December 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Barbara C Fam, and Laura J Rose, and Rebecca Sgambellone, and Zheng Ruan, and Joseph Proietto, and Sofianos Andrikopoulos
August 1998, The Journal of biological chemistry,
Barbara C Fam, and Laura J Rose, and Rebecca Sgambellone, and Zheng Ruan, and Joseph Proietto, and Sofianos Andrikopoulos
July 2013, Physiological reviews,
Barbara C Fam, and Laura J Rose, and Rebecca Sgambellone, and Zheng Ruan, and Joseph Proietto, and Sofianos Andrikopoulos
October 2011, Cellular signalling,
Barbara C Fam, and Laura J Rose, and Rebecca Sgambellone, and Zheng Ruan, and Joseph Proietto, and Sofianos Andrikopoulos
August 1997, The Journal of clinical investigation,
Barbara C Fam, and Laura J Rose, and Rebecca Sgambellone, and Zheng Ruan, and Joseph Proietto, and Sofianos Andrikopoulos
January 1996, The Biochemical journal,
Barbara C Fam, and Laura J Rose, and Rebecca Sgambellone, and Zheng Ruan, and Joseph Proietto, and Sofianos Andrikopoulos
September 2016, The Journal of physiology,
Barbara C Fam, and Laura J Rose, and Rebecca Sgambellone, and Zheng Ruan, and Joseph Proietto, and Sofianos Andrikopoulos
May 2002, The Journal of biological chemistry,
Barbara C Fam, and Laura J Rose, and Rebecca Sgambellone, and Zheng Ruan, and Joseph Proietto, and Sofianos Andrikopoulos
June 1991, The Journal of clinical investigation,
Barbara C Fam, and Laura J Rose, and Rebecca Sgambellone, and Zheng Ruan, and Joseph Proietto, and Sofianos Andrikopoulos
February 2021, American journal of physiology. Endocrinology and metabolism,
Copied contents to your clipboard!