Formation of hemoglobin-benzo[a]pyrene adducts in human erythrocytes incubated with benzo[a]pyrene and hamster embryo cells. 1990

D A Haugen, and I S Zegar
Biological and Medical Research Division, Argonne National Laboratory, IL 60439-4833.

Evidence is accumulating that the levels of covalent carcinogen-macromolecule adducts, including adducts with hemoglobin, reflect biologically effective levels of carcinogen exposure. The purposes of the present study were (a) to establish a cellular system for obtaining adducts between intracellular human hemoglobin and metabolites of polycyclic aromatic hydrocarbons (PAH), and (b) to evaluate techniques for chromatographic characterization of the adducts. We showed that hemoglobin-benzo[a]pyrene adducts were formed when human erythrocytes were treated with [3H]benzo[a]pyrene (BP) in the presence of hamster embryo fibroblasts, which are known to be effective for BP metabolism. After lysis of the erythrocytes, noncovalently bound BP and its metabolites were effectively removed from hemoglobin under mild conditions by using hydrophobic interaction and size-exclusion liquid chromatography. Three to five distinct adducts were resolved by reversed-phase and ion-exchange liquid chromatography. As determined by a two-step, reversed-phase liquid chromatographic procedure, trypsin treatment of globin from the cellular system yielded at least three of the four 7,8,9,10-tetrahydro-7,8,9,10-tetrahydroxy BP tetrols known to arise from mammalian metabolism of BP. This observation is consistent with both (a) the recently described formation of labile carboxyl esters via reaction of BP-7,8-dihydrodiol-9,10-epoxide (BPDE) with hemoglobin and (b) the known formation of both anti- and syn-BPDE in hamster embryo fibroblasts. In addition, high-performance liquid chromatographic analysis demonstrated the presence of other products presumed to be BP-peptide adducts because of their susceptibility to thermolysin treatment.

UI MeSH Term Description Entries
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D A Haugen, and I S Zegar
July 1978, Chemico-biological interactions,
D A Haugen, and I S Zegar
July 1977, Biochemical and biophysical research communications,
D A Haugen, and I S Zegar
January 1989, Chemical research in toxicology,
D A Haugen, and I S Zegar
August 1971, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!