Human embryonic stem cells and embryonal carcinoma cells have overlapping and distinct metabolic signatures. 2012

Raed Abu Dawud, and Kerstin Schreiber, and Dietmar Schomburg, and James Adjaye
Department of Vertebrate Genomics, Max-Planck-Institute for Molecular Genetics, Berlin, Germany.

While human embryonic stem cells (hESCs) and human embryonal carcinoma cells (hECCs) have been studied extensively at the levels of the genome, transcriptome, proteome and epigenome our knowledge of their corresponding metabolomes is limited. Here, we present the metabolic signatures of hESCs and hESCs obtained by untargeted gas chromatography coupled to mass spectrometry (GC-MS). Whilst some metabolites are common to both cell types, representing the self-renewal and house-keeping signatures, others were either higher (e.g., octadecenoic acid, glycerol-3-phosphate, 4-hydroxyproline) or lower (e.g., glutamic acid, mannitol, malic acid, GABA) in hESCs (H9) compared to hECCs (NTERA2), these represent cell type specific signatures. Further, our combined results of GC-MS and microarray based gene expression profiling of undifferentiated and OCT4-depleted hESCs are consistent with the Warburg effect which is increased glycolysis in embryonic cells and tumor cells in the presence of O(2) while oxidative phosphorylation (OXPHOS) is impaired or even shut down. RNAi-based OCT4 knock down mediated differentiation resulted in the activation of the poised OXPHOS machinery by expressing missing key proteins such as NDUFC1, UQCRB and COX, increase in TCA cycle activity and decreased lactate metabolism. These results shed light on the metabolite layer of pluripotent stem cells and could potentially establish novel metabolic markers of self renewal and pluripotency.

UI MeSH Term Description Entries
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D049452 Green Fluorescent Proteins Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH. Green Fluorescent Protein,Green-Fluorescent Protein,Green-Fluorescent Proteins,Fluorescent Protein, Green,Fluorescent Proteins, Green,Protein, Green Fluorescent,Protein, Green-Fluorescent,Proteins, Green Fluorescent,Proteins, Green-Fluorescent
D050814 Octamer Transcription Factor-3 An octamer transcription factor that is expressed primarily in totipotent embryonic STEM CELLS and GERM CELLS and is down-regulated during CELL DIFFERENTIATION. Oct-3 Transcription Factor,Transcription Factor Oct-3,Oct-4 Transcription Factor,Octamer-Binding Protein 4,POU Domain, Class 5, Transcription Factor 1,POU5F1 Transcription Factor,Transcription Factor Oct-4,Oct 3 Transcription Factor,Oct 4 Transcription Factor,Oct-3, Transcription Factor,Oct-4, Transcription Factor,Octamer Binding Protein 4,Octamer Transcription Factor 3,Transcription Factor Oct 3,Transcription Factor Oct 4,Transcription Factor, Oct-3,Transcription Factor, Oct-4,Transcription Factor, POU5F1,Transcription Factor-3, Octamer
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D053595 Embryonic Stem Cells Cells derived from the BLASTOCYST INNER CELL MASS which forms before implantation in the uterine wall. They retain the ability to divide, proliferate and provide progenitor cells that can differentiate into specialized cells. Stem Cells, Embryonic,Cell, Embryonic Stem,Cells, Embryonic Stem,Embryonic Stem Cell,Stem Cell, Embryonic
D054278 Embryonal Carcinoma Stem Cells The malignant stem cells of TERATOCARCINOMAS, which resemble pluripotent stem cells of the BLASTOCYST INNER CELL MASS. The EC cells can be grown in vitro, and experimentally induced to differentiate. They are used as a model system for studying early embryonic cell differentiation. Embryonal Carcinoma Cells,F9 Embryonal Carcinoma Cells,F9 Teratocarcinoma Stem Cells,Teratocarcinoma Stem Cells,Carcinoma Cell, Embryonal,Carcinoma Cells, Embryonal,Cell, Embryonal Carcinoma,Cell, Teratocarcinoma Stem,Cells, Embryonal Carcinoma,Cells, Teratocarcinoma Stem,Embryonal Carcinoma Cell,Stem Cell, Teratocarcinoma,Stem Cells, Teratocarcinoma,Teratocarcinoma Stem Cell

Related Publications

Raed Abu Dawud, and Kerstin Schreiber, and Dietmar Schomburg, and James Adjaye
August 2017, Biochimica et biophysica acta. General subjects,
Raed Abu Dawud, and Kerstin Schreiber, and Dietmar Schomburg, and James Adjaye
April 2010, Proteomics,
Raed Abu Dawud, and Kerstin Schreiber, and Dietmar Schomburg, and James Adjaye
July 2008, Journal of proteome research,
Raed Abu Dawud, and Kerstin Schreiber, and Dietmar Schomburg, and James Adjaye
August 2004, Stem cells and development,
Raed Abu Dawud, and Kerstin Schreiber, and Dietmar Schomburg, and James Adjaye
September 2019, Cell stem cell,
Raed Abu Dawud, and Kerstin Schreiber, and Dietmar Schomburg, and James Adjaye
September 2014, Cell stem cell,
Raed Abu Dawud, and Kerstin Schreiber, and Dietmar Schomburg, and James Adjaye
December 1984, Cell differentiation,
Raed Abu Dawud, and Kerstin Schreiber, and Dietmar Schomburg, and James Adjaye
January 2018, PloS one,
Raed Abu Dawud, and Kerstin Schreiber, and Dietmar Schomburg, and James Adjaye
December 1979, Journal of embryology and experimental morphology,
Raed Abu Dawud, and Kerstin Schreiber, and Dietmar Schomburg, and James Adjaye
May 1994, Biochemical and biophysical research communications,
Copied contents to your clipboard!