Use of protein-mediated lipid exchange in the study of membrane-bound enzymes. The lipid dependence of glucose-6-phosphatase. 1979

E V Dyatlovitskaya, and A F Lemenovskaya, and L D Bergelson

The ability of liver lipid-exchange proteins to introduce foreign phospholipids into microsomes was used in a study of the lipid dependence of glucose-6-phosphatase. Supplementation of intact rat liver and hepatoma microsomes with exogeneous aminophospholipids prevents the decline of glucose-6-phosphatase activity during incubation, whereas the introduction of exogeneous phosphatidylcholine has no protective effect. On the contrary with deoxycholate-disrupted hepatoma microsomes, introduction of additional phosphatidylcholine causes activation while phosphatidylethanolamine has only little effect. The results are explained by assuming that the transport unit and the catalytic moiety of the glucose-6-phosphatase system have different lipid requirements, the activity of the former protein depending mainly on phosphatidylethanolamine and phosphatidylserine and that of the catalytic protein depending on phosphatidylcholine. In deoxycholate-disrupted liver microsomes (in which both the glucose-6-phosphatase activity and the phosphatidylcholine content are much higher than in hepatoma microsomes) incubation with phosphatidylcholine and lipid-exchange proteins alters neither the phospholipid composition nor the enzyme activity. THis suggests that the diminished activity of glucose-6-phosphatase in hepatomas may be partly due to a low level of phosphatidylcholine.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008114 Liver Neoplasms, Experimental Experimentally induced tumors of the LIVER. Hepatoma, Experimental,Hepatoma, Morris,Hepatoma, Novikoff,Experimental Hepatoma,Experimental Hepatomas,Experimental Liver Neoplasms,Hepatomas, Experimental,Neoplasms, Experimental Liver,Experimental Liver Neoplasm,Liver Neoplasm, Experimental,Morris Hepatoma,Novikoff Hepatoma
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D003840 Deoxycholic Acid A bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Deoxycholate,Desoxycholic Acid,Kybella,Choleic Acid,Deoxycholic Acid, 12beta-Isomer,Deoxycholic Acid, 3beta-Isomer,Deoxycholic Acid, 5alpha-Isomer,Deoxycholic Acid, Disodium Salt,Deoxycholic Acid, Magnesium (2:1) Salt,Deoxycholic Acid, Monoammonium Salt,Deoxycholic Acid, Monopotassium Salt,Deoxycholic Acid, Monosodium Salt,Deoxycholic Acid, Sodium Salt, 12beta-Isomer,Dihydroxycholanoic Acid,Lagodeoxycholic Acid,Sodium Deoxycholate,12beta-Isomer Deoxycholic Acid,3beta-Isomer Deoxycholic Acid,5alpha-Isomer Deoxycholic Acid,Deoxycholate, Sodium,Deoxycholic Acid, 12beta Isomer,Deoxycholic Acid, 3beta Isomer,Deoxycholic Acid, 5alpha Isomer
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005952 Glucose-6-Phosphatase An enzyme that catalyzes the conversion of D-glucose 6-phosphate and water to D-glucose and orthophosphate. EC 3.1.3.9. Glucosephosphatase,Glucose 6-Phosphatase,Glucose-6-Phosphate Phosphohydrolase,Glucose 6 Phosphatase

Related Publications

E V Dyatlovitskaya, and A F Lemenovskaya, and L D Bergelson
March 1979, Biokhimiia (Moscow, Russia),
E V Dyatlovitskaya, and A F Lemenovskaya, and L D Bergelson
October 1979, Biokhimiia (Moscow, Russia),
E V Dyatlovitskaya, and A F Lemenovskaya, and L D Bergelson
January 1985, Radiobiologiia,
E V Dyatlovitskaya, and A F Lemenovskaya, and L D Bergelson
April 1960, Science (New York, N.Y.),
E V Dyatlovitskaya, and A F Lemenovskaya, and L D Bergelson
December 1977, Journal of bioenergetics and biomembranes,
E V Dyatlovitskaya, and A F Lemenovskaya, and L D Bergelson
January 1977, Gerontology,
E V Dyatlovitskaya, and A F Lemenovskaya, and L D Bergelson
February 1980, Biochemical Society transactions,
E V Dyatlovitskaya, and A F Lemenovskaya, and L D Bergelson
April 1990, Research communications in chemical pathology and pharmacology,
E V Dyatlovitskaya, and A F Lemenovskaya, and L D Bergelson
January 1982, Biophysical journal,
Copied contents to your clipboard!