Reflex inhibition of human soleus muscle during fatigue. 1990

S J Garland, and A J McComas
Department of Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.

1. Human soleus muscles were fatigued under ischaemic conditions by intermittent stimulation at 15 Hz. When maximal voluntary plantarflexion was then attempted, the loss of torque was found to be associated with a reduction in voluntary EMG activity. 2. The decrease in EMG activity could not have been due to 'exhaustion' of descending motor drive in the central nervous system since fatigue had been induced by electrical stimulation of peripheral nerve fibres. Similarly, the decrease could not be explained by changes at the neuromuscular junction or muscle fibre membrane, since changes in the M wave (evoked muscle compound action potential) were relatively modest. 3. When the excitability of the soleus motoneurones was tested during fatigue, using the H (Hoffmann) reflex, it was found to be significantly reduced. Control experiments with ischaemia or electrical stimulation, but without fatigue, failed to demonstrate any significant effects on reflex excitability. 4. The findings in this study favour the concept of reflex inhibition of alpha-motoneurones during fatigue.

UI MeSH Term Description Entries
D007511 Ischemia A hypoperfusion of the BLOOD through an organ or tissue caused by a PATHOLOGIC CONSTRICTION or obstruction of its BLOOD VESSELS, or an absence of BLOOD CIRCULATION. Ischemias
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005260 Female Females
D006181 H-Reflex A monosynaptic reflex elicited by stimulating a nerve, particularly the tibial nerve, with an electric shock. H Reflex,H-Reflexes,H Reflexes,Reflex, H
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

S J Garland, and A J McComas
April 1991, The Journal of physiology,
S J Garland, and A J McComas
April 1999, Motor control,
S J Garland, and A J McComas
April 2017, Journal of prosthodontic research,
S J Garland, and A J McComas
July 2003, Neuroscience letters,
S J Garland, and A J McComas
August 2002, European journal of applied physiology,
S J Garland, and A J McComas
December 2001, Neuroscience letters,
S J Garland, and A J McComas
December 2009, Archives of physical medicine and rehabilitation,
S J Garland, and A J McComas
September 1976, Journal of neurophysiology,
S J Garland, and A J McComas
July 2005, Movement disorders : official journal of the Movement Disorder Society,
Copied contents to your clipboard!