Enzyme-catalyzed DNA unwinding. A DNA-dependent ATPase from E. coli. 1979

G T Yarranton, and R H Das, and M L Gefter

We have isolated a new DNA-dependent ATPase from E. coli. The enzyme has been purified to greater than 90% purity. It appears to be composed of two identical polypeptide chains of molecular weight 20,000. The enzyme catalyzed the hydrolysis of ATP in the presence, but not in the absence, of single-stranded DNA. Double-stranded DNA is not a cofactor. The products of hydrolysis are ADP and Pi. The enzyme also catalyzed strand separation of duplex DNA in the presence of ATP and E. coli DNA binding protein. Two E. coli proteins capable of promoting strand separation have been reported previously and have been termed helicase I and II (Abdel-Monem, M., and Hoffmann-Berling, H. (1977) Eur. J. Biochem. 79, 33-38). Accordingly, this protein is named helicase III.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

G T Yarranton, and R H Das, and M L Gefter
April 1979, Proceedings of the National Academy of Sciences of the United States of America,
G T Yarranton, and R H Das, and M L Gefter
October 1970, Biochemical and biophysical research communications,
G T Yarranton, and R H Das, and M L Gefter
June 1976, European journal of biochemistry,
G T Yarranton, and R H Das, and M L Gefter
March 1968, Nature,
G T Yarranton, and R H Das, and M L Gefter
July 1982, Nature,
G T Yarranton, and R H Das, and M L Gefter
September 1977, European journal of biochemistry,
G T Yarranton, and R H Das, and M L Gefter
September 1977, European journal of biochemistry,
G T Yarranton, and R H Das, and M L Gefter
March 1977, Journal of molecular biology,
G T Yarranton, and R H Das, and M L Gefter
June 1976, European journal of biochemistry,
G T Yarranton, and R H Das, and M L Gefter
February 1993, The Journal of biological chemistry,
Copied contents to your clipboard!