Evaluation of ProExC as a prognostic marker in oropharyngeal squamous cell carcinomas. 2012

Anne M Mills, and Andrew H Beck, and Nader Pourmand, and Quynh Thu Le, and Christina S Kong
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.

ProExC expression has been shown to perform similarly to p16 as an aid in the diagnosis of cervical dysplasia but has not been well characterized in head and neck squamous cell carcinomas (SCC). The purpose of this study is to determine whether ProExC performs similarly to p16 as a prognostic marker in oropharyngeal SCC and to evaluate the threshold of ProExC and p16 staining that correlates with survival. ProExC, p16, and human papillomavirus DNA in situ hybridization were performed on tissue microarray (TMA) cores and whole sections from 62 patients with oropharyngeal SCC. Sensitivity and specificity for high-risk HPV and correlation with overall survival (OS), cancer-specific survival (CSS), and time to distant metastasis (TDM) were calculated for ProExC and p16 at different thresholds. ProExC did not prove to be a robust marker. It showed strong correlation with OS at a 66% threshold on TMA cores, but correlation with OS was lost on whole sections. It also exhibited low sensitivity (53.7%) on TMA cores and low specificity on whole sections (65%). ProExC at a 33% threshold exhibited unacceptably low specificity and did not correlate with OS, CSS, or TDM. Sensitivity and specificity of p16 varied predictably with threshold: higher sensitivity and lower specificity with lower thresholds and vice versa for higher thresholds. p16 at a 50% threshold offers a balance between sensitivity and specificity, and correlates with OS, CSS, and TDM on whole sections; correlation with TDM is lost on TMA cores. These findings indicate that ProExC does not perform well enough to be used as a prognostic marker in oropharyngeal SCC. p16 should be used and scored as positive when at least half the tumor is strongly stained.

UI MeSH Term Description Entries
D009062 Mouth Neoplasms Tumors or cancer of the MOUTH. Cancer of Mouth,Mouth Cancer,Oral Cancer,Oral Neoplasms,Cancer of the Mouth,Neoplasms, Mouth,Neoplasms, Oral,Cancer, Mouth,Cancer, Oral,Cancers, Mouth,Cancers, Oral,Mouth Cancers,Mouth Neoplasm,Neoplasm, Mouth,Neoplasm, Oral,Oral Cancers,Oral Neoplasm
D011379 Prognosis A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations. Prognostic Factor,Prognostic Factors,Factor, Prognostic,Factors, Prognostic,Prognoses
D002294 Carcinoma, Squamous Cell A carcinoma derived from stratified SQUAMOUS EPITHELIAL CELLS. It may also occur in sites where glandular or columnar epithelium is normally present. (From Stedman, 25th ed) Carcinoma, Epidermoid,Carcinoma, Planocellular,Carcinoma, Squamous,Squamous Cell Carcinoma,Carcinomas, Epidermoid,Carcinomas, Planocellular,Carcinomas, Squamous,Carcinomas, Squamous Cell,Epidermoid Carcinoma,Epidermoid Carcinomas,Planocellular Carcinoma,Planocellular Carcinomas,Squamous Carcinoma,Squamous Carcinomas,Squamous Cell Carcinomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D014408 Biomarkers, Tumor Molecular products metabolized and secreted by neoplastic tissue and characterized biochemically in cells or BODY FLUIDS. They are indicators of tumor stage and grade as well as useful for monitoring responses to treatment and predicting recurrence. Many chemical groups are represented including HORMONES; ANTIGENS; amino and NUCLEIC ACIDS; ENZYMES; POLYAMINES; and specific CELL MEMBRANE PROTEINS and LIPIDS. Biochemical Tumor Marker,Cancer Biomarker,Carcinogen Markers,Markers, Tumor,Metabolite Markers, Neoplasm,Tumor Biomarker,Tumor Marker,Tumor Markers, Biochemical,Tumor Markers, Biological,Biochemical Tumor Markers,Biological Tumor Marker,Biological Tumor Markers,Biomarkers, Cancer,Marker, Biochemical Tumor,Marker, Biologic Tumor,Marker, Biological Tumor,Marker, Neoplasm Metabolite,Marker, Tumor Metabolite,Markers, Biochemical Tumor,Markers, Biological Tumor,Markers, Neoplasm Metabolite,Markers, Tumor Metabolite,Metabolite Markers, Tumor,Neoplasm Metabolite Markers,Tumor Markers, Biologic,Tumor Metabolite Marker,Biologic Tumor Marker,Biologic Tumor Markers,Biomarker, Cancer,Biomarker, Tumor,Cancer Biomarkers,Marker, Tumor,Markers, Biologic Tumor,Markers, Carcinogen,Metabolite Marker, Neoplasm,Metabolite Marker, Tumor,Neoplasm Metabolite Marker,Tumor Biomarkers,Tumor Marker, Biochemical,Tumor Marker, Biologic,Tumor Marker, Biological,Tumor Markers,Tumor Metabolite Markers
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations
D046888 Tissue Array Analysis The simultaneous analysis of multiple samples of TISSUES or CELLS from BIOPSY or in vitro culture that have been arranged in an array format on slides or microchips. Cell Array Analysis,Cell Microarray Analysis,Tissue Microarray Analysis,Analyses, Cell Array,Analyses, Cell Microarray,Analyses, Tissue Array,Analyses, Tissue Microarray,Analysis, Cell Array,Analysis, Cell Microarray,Analysis, Tissue Array,Analysis, Tissue Microarray,Array Analyses, Cell,Array Analyses, Tissue,Array Analysis, Cell,Array Analysis, Tissue,Cell Array Analyses,Cell Microarray Analyses,Microarray Analyses, Cell,Microarray Analyses, Tissue,Microarray Analysis, Cell,Microarray Analysis, Tissue,Tissue Array Analyses,Tissue Microarray Analyses
D053208 Kaplan-Meier Estimate A nonparametric method of compiling LIFE TABLES or survival tables. It combines calculated probabilities of survival and estimates to allow for observations occurring beyond a measurement threshold, which are assumed to occur randomly. Time intervals are defined as ending each time an event occurs and are therefore unequal. (From Last, A Dictionary of Epidemiology, 1995) Kaplan-Meier Survival Curve,Kaplan-Meier Analysis,Kaplan-Meier Survival Curves,Kaplan-Meier Test,Product-Limit Method,Analysis, Kaplan-Meier,Curve, Kaplan-Meier Survival,Curves, Kaplan-Meier Survival,Estimate, Kaplan-Meier,Kaplan Meier Analysis,Kaplan Meier Survival Curve,Kaplan Meier Survival Curves,Kaplan Meier Test,Method, Product-Limit,Methods, Product-Limit,Product Limit Method,Product-Limit Methods,Survival Curve, Kaplan-Meier,Survival Curves, Kaplan-Meier,Test, Kaplan-Meier

Related Publications

Anne M Mills, and Andrew H Beck, and Nader Pourmand, and Quynh Thu Le, and Christina S Kong
June 2021, Journal of the National Cancer Institute,
Anne M Mills, and Andrew H Beck, and Nader Pourmand, and Quynh Thu Le, and Christina S Kong
July 2016, HNO,
Anne M Mills, and Andrew H Beck, and Nader Pourmand, and Quynh Thu Le, and Christina S Kong
August 2009, The Laryngoscope,
Anne M Mills, and Andrew H Beck, and Nader Pourmand, and Quynh Thu Le, and Christina S Kong
February 2014, Head & neck,
Anne M Mills, and Andrew H Beck, and Nader Pourmand, and Quynh Thu Le, and Christina S Kong
July 2021, Cancers,
Anne M Mills, and Andrew H Beck, and Nader Pourmand, and Quynh Thu Le, and Christina S Kong
February 2005, Clinical cancer research : an official journal of the American Association for Cancer Research,
Anne M Mills, and Andrew H Beck, and Nader Pourmand, and Quynh Thu Le, and Christina S Kong
May 2010, Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology,
Anne M Mills, and Andrew H Beck, and Nader Pourmand, and Quynh Thu Le, and Christina S Kong
January 2010, The International journal of biological markers,
Anne M Mills, and Andrew H Beck, and Nader Pourmand, and Quynh Thu Le, and Christina S Kong
March 2014, Japanese journal of clinical oncology,
Anne M Mills, and Andrew H Beck, and Nader Pourmand, and Quynh Thu Le, and Christina S Kong
January 2014, BioMed research international,
Copied contents to your clipboard!