Luciferase reporter system for studying the effect of nanoparticles on gene expression. 2012

Min Ding, and Linda Bowman, and Vincent Castranova
Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA. mid5@cdc.gov

Nanotechnology exploits the fact that nanoparticles exhibit unique physicochemical properties, which are distinct from larger particles of the same composition. It follows that nanoparticles may also express distinct bioactivity and unique interactions with biological systems. Therefore, it is essential to assess the potential health risks of exposure to nanoparticles to allow development and implementation of prevention measures. One of the biggest challenges facing the field of nanotoxicology is the huge variety of different nanoparticle types possessing a variety of properties. Genetic Luciferase Reporter System or Reporter gene assay has become an invaluable tool in studies of gene expression. This is achieved by linking the firefly luciferase gene to a promoter sequence. Luciferase assays are quick, highly sensitive, have wide dynamic range, and are cheap to perform. Because of their simplicity and versatility, and because of the absence of endogenous luciferase activity in most cell types, this test can be applied for testing a large variety of nanomaterials for their pathogenic or carcinogenetic effects on a wide range of mammalian cells. This system is an ideal early-stage toxicology tool for screening nanomaterials. Here we describe the Genetic Luciferase Reporter System as the method for detecting alteration of gene expression in response to external stimuli (e.g., nanoparticles).

UI MeSH Term Description Entries
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D053758 Nanoparticles Nanometer-sized particles that are nanoscale in three dimensions. They include nanocrystaline materials; NANOCAPSULES; METAL NANOPARTICLES; DENDRIMERS, and QUANTUM DOTS. The uses of nanoparticles include DRUG DELIVERY SYSTEMS and cancer targeting and imaging. Nanocrystalline Materials,Nanocrystals,Material, Nanocrystalline,Materials, Nanocrystalline,Nanocrystal,Nanocrystalline Material,Nanoparticle
D017930 Genes, Reporter Genes whose expression is easily detectable and therefore used to study promoter activity at many positions in a target genome. In recombinant DNA technology, these genes may be attached to a promoter region of interest. Reporter Genes,Gene, Reporter,Reporter Gene

Related Publications

Min Ding, and Linda Bowman, and Vincent Castranova
April 1998, RNA (New York, N.Y.),
Min Ding, and Linda Bowman, and Vincent Castranova
February 2016, Journal of biotechnology,
Min Ding, and Linda Bowman, and Vincent Castranova
October 1987, Nucleic acids research,
Min Ding, and Linda Bowman, and Vincent Castranova
June 1997, Current genetics,
Min Ding, and Linda Bowman, and Vincent Castranova
September 2008, Journal of visualized experiments : JoVE,
Min Ding, and Linda Bowman, and Vincent Castranova
January 1999, Methods in molecular medicine,
Min Ding, and Linda Bowman, and Vincent Castranova
January 2010, Nature methods,
Min Ding, and Linda Bowman, and Vincent Castranova
March 2007, Applied and environmental microbiology,
Min Ding, and Linda Bowman, and Vincent Castranova
June 2000, Analytical biochemistry,
Min Ding, and Linda Bowman, and Vincent Castranova
January 2000, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!