Skeletal muscle calcium metabolism and contractile force in vitamin D-deficient chicks. 1979

D Pleasure, and B Wyszynski, and A Sumner, and D Schotland, and B Feldman, and N Nugent, and K Hitz, and D B Goodman

The myopathy associated with vitamin D deficiency has not been well characterized, and it is not known if weakness is a result of a specific effect of vitamin D deficiency on skeletal muscle. Chicks were raised from hatching on a vitamin D-deficient diet, and by 3 wk of age were hypocalcemic and appeared weak. Tension generated by triceps surae during repetitive stimulation of posterior tibial nerve was significantly less than that developed by chicks given vitamin D(3) supplements (309 g tension/g wet weight of triceps surae, SD 60, for vitamin D-deficient chicks; 470, SD 77, for vitamin D(3)-treated chicks, P < 0.01). Histochemical and electron microscopic examination of skeletal muscles of these chicks showed no abnormalities, and there were no electrophysiologic evidences of motor nerve or neuromuscular junction dysfunction. The concentration of ATP in skeletal muscle of the vitamin D-deficient chicks (5.75 mumol/g wet weight, SD 0.17) was not significantly different from that in vitamin D-treated chicks (5.60, SD 0.50). There was no correlation between strength and serum calcium, serum inorganic phosphate, or skeletal muscle inorganic phosphate. Relaxation of tension after tetanic stimulation was slowed in the vitamin D-deficient chicks (20.6 ms, SD 1.7, vs. 15.4, SD 1.3, in vitamin D-treated chicks and 15.3, SD 1.0, in normal control chicks), and in vitro (45)Ca(++) transport by sarcoplasmic reticulum from the vitamin D-deficient chicks was reduced. Calcium content of mitochondria prepared from leg muscles of vitamin D-deficient chicks (24 nmol/mg mitochondrial protein, SD 6) was considerably lower than that of mitochondria from normal control chicks (45, SD 8) or from chicks treated with vitamin D for 2 wk or more (66-100, depending upon level and duration of therapy). Treatment of the vitamin D-deficient chicks from hatching with sufficient dietary calcium to produce hypercalcemia did not significantly raise skeletal muscle mitochondrial calcium content (31 nmol/mg mitochondrial protein, SD 7) and did not prevent weakness. These studies demonstrate objective weakness as a result of myopathy in vitamin D-deficient chicks, and provide evidence that vitamin D deficiency has effects on skeletal muscle calcium metabolism not secondary to altered plasma concentrations of calcium and phosphate.

UI MeSH Term Description Entries
D006996 Hypocalcemia Reduction of the blood calcium below normal. Manifestations include hyperactive deep tendon reflexes, Chvostek's sign, muscle and abdominal cramps, and carpopedal spasm. (Dorland, 27th ed) Hypocalcemias
D008931 Mitochondria, Muscle Mitochondria of skeletal and smooth muscle. It does not include myocardial mitochondria for which MITOCHONDRIA, HEART is available. Sarcosomes,Mitochondrion, Muscle,Muscle Mitochondria,Muscle Mitochondrion,Sarcosome
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009123 Muscle Hypotonia A diminution of the skeletal muscle tone marked by a diminished resistance to passive stretching. Flaccid Muscle Tone,Hypotonia,Decreased Muscle Tone,Floppy Muscles,Hypomyotonia,Hypotony, Muscle,Muscle Flaccidity,Muscle Tone Atonic,Muscle Tone Poor,Muscular Flaccidity,Muscular Hypotonia,Neonatal Hypotonia,Unilateral Hypotonia,Flaccidity, Muscle,Flaccidity, Muscular,Floppy Muscle,Hypotonia, Muscle,Hypotonia, Muscular,Hypotonia, Neonatal,Hypotonia, Unilateral,Hypotonias, Neonatal,Hypotonias, Unilateral,Muscle Hypotony,Muscle Tone Atonics,Muscle Tone, Decreased,Muscle Tone, Flaccid,Muscle, Floppy,Muscles, Floppy,Muscular Flaccidities,Neonatal Hypotonias,Tone Atonic, Muscle,Tone Poor, Muscle
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002122 Calcium Chloride A salt used to replenish calcium levels, as an acid-producing diuretic, and as an antidote for magnesium poisoning. Calcium Chloride Dihydrate,Calcium Chloride, Anhydrous
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D002762 Cholecalciferol Derivative of 7-dehydroxycholesterol formed by ULTRAVIOLET RAYS breaking of the C9-C10 bond. It differs from ERGOCALCIFEROL in having a single bond between C22 and C23 and lacking a methyl group at C24. Vitamin D 3,(3 beta,5Z,7E)-9,10-Secocholesta-5,7,10(19)-trien-3-ol,Calciol,Cholecalciferols,Vitamin D3
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014808 Vitamin D Deficiency A nutritional condition produced by a deficiency of VITAMIN D in the diet, insufficient production of vitamin D in the skin, inadequate absorption of vitamin D from the diet, or abnormal conversion of vitamin D to its bioactive metabolites. It is manifested clinically as RICKETS in children and OSTEOMALACIA in adults. (From Cecil Textbook of Medicine, 19th ed, p1406) Deficiency, Vitamin D,Deficiencies, Vitamin D,Vitamin D Deficiencies

Related Publications

D Pleasure, and B Wyszynski, and A Sumner, and D Schotland, and B Feldman, and N Nugent, and K Hitz, and D B Goodman
July 1990, Calcified tissue international,
D Pleasure, and B Wyszynski, and A Sumner, and D Schotland, and B Feldman, and N Nugent, and K Hitz, and D B Goodman
September 1976, American journal of veterinary research,
D Pleasure, and B Wyszynski, and A Sumner, and D Schotland, and B Feldman, and N Nugent, and K Hitz, and D B Goodman
April 1958, The American journal of physiology,
D Pleasure, and B Wyszynski, and A Sumner, and D Schotland, and B Feldman, and N Nugent, and K Hitz, and D B Goodman
June 1962, The Journal of vitaminology,
D Pleasure, and B Wyszynski, and A Sumner, and D Schotland, and B Feldman, and N Nugent, and K Hitz, and D B Goodman
July 1959, The Journal of nutrition,
D Pleasure, and B Wyszynski, and A Sumner, and D Schotland, and B Feldman, and N Nugent, and K Hitz, and D B Goodman
July 2003, Clinical calcium,
D Pleasure, and B Wyszynski, and A Sumner, and D Schotland, and B Feldman, and N Nugent, and K Hitz, and D B Goodman
June 1993, The Journal of membrane biology,
D Pleasure, and B Wyszynski, and A Sumner, and D Schotland, and B Feldman, and N Nugent, and K Hitz, and D B Goodman
May 2007, Osteoarthritis and cartilage,
D Pleasure, and B Wyszynski, and A Sumner, and D Schotland, and B Feldman, and N Nugent, and K Hitz, and D B Goodman
January 1986, Mineral and electrolyte metabolism,
D Pleasure, and B Wyszynski, and A Sumner, and D Schotland, and B Feldman, and N Nugent, and K Hitz, and D B Goodman
March 2020, The Journal of steroid biochemistry and molecular biology,
Copied contents to your clipboard!