The HGF receptor/Met tyrosine kinase is a key regulator of dendritic cell migration in skin immunity. 2012

Jea-Hyun Baek, and Carmen Birchmeier, and Martin Zenke, and Thomas Hieronymus
Department of Cell Biology, Institute for Biomedical Engineering, Medical Faculty, Rheinisch-Westfälische Technische Hochschule, 52074 Aachen, Germany.

The Met tyrosine kinase has a pivotal role in embryonic development and tissue regeneration, and deregulated Met signaling contributes to tumorigenesis. After binding of its cognate ligand hepatocyte growth factor, Met signaling confers mitogenic, morphogenic, and motogenic activity to various cells. Met expression in the hematopoietic compartment is limited to progenitor cells and their Ag-presenting progeny, including dendritic cells (DCs). In this study, we demonstrate that Met signaling in skin-resident DCs is essential for their emigration toward draining lymph nodes upon inflammation-induced activation. By using a conditional Met-deficient mouse model (Met(flox/flox)), we show that Met acts on the initial step of DC release from skin tissue. Met-deficient DCs fail to reach skin-draining lymph nodes upon activation while exhibiting an activated phenotype. Contact hypersensitivity reactions in response to various contact allergens is strongly impaired in Met-deficient mice. Inhibition of Met signaling by single-dose epicutaneous administration of the Met kinase-specific inhibitor SU11274 also suppressed contact hypersensitivity in wild-type mice. Additionally, we found that Met signaling regulates matrix metalloproteinase MMP2 and MMP9 activity, which is important for DC migration through extracellular matrix. These data unveil Met signaling in DCs as a critical determinant for the maintenance of normal immune function and suggest Met as a potential target for treatment of autoimmune skin diseases.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D015151 Immunoblotting Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies. Dot Immunoblotting,Electroimmunoblotting,Immunoelectroblotting,Reverse Immunoblotting,Immunoblotting, Dot,Immunoblotting, Reverse,Dot Immunoblottings,Electroimmunoblottings,Immunoblottings,Immunoblottings, Dot,Immunoblottings, Reverse,Immunoelectroblottings,Reverse Immunoblottings
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Jea-Hyun Baek, and Carmen Birchmeier, and Martin Zenke, and Thomas Hieronymus
April 1994, Immunological reviews,
Jea-Hyun Baek, and Carmen Birchmeier, and Martin Zenke, and Thomas Hieronymus
March 2007, Nature,
Jea-Hyun Baek, and Carmen Birchmeier, and Martin Zenke, and Thomas Hieronymus
October 2018, Placenta,
Jea-Hyun Baek, and Carmen Birchmeier, and Martin Zenke, and Thomas Hieronymus
October 1998, Trends in cell biology,
Jea-Hyun Baek, and Carmen Birchmeier, and Martin Zenke, and Thomas Hieronymus
October 2010, Biology of reproduction,
Jea-Hyun Baek, and Carmen Birchmeier, and Martin Zenke, and Thomas Hieronymus
July 2014, Molecular and cellular biology,
Jea-Hyun Baek, and Carmen Birchmeier, and Martin Zenke, and Thomas Hieronymus
November 2009, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer,
Jea-Hyun Baek, and Carmen Birchmeier, and Martin Zenke, and Thomas Hieronymus
November 2021, Biomedicines,
Jea-Hyun Baek, and Carmen Birchmeier, and Martin Zenke, and Thomas Hieronymus
April 2016, Science (New York, N.Y.),
Jea-Hyun Baek, and Carmen Birchmeier, and Martin Zenke, and Thomas Hieronymus
June 2014, Pharmacology & therapeutics,
Copied contents to your clipboard!