Rat renal papillary tissue explants survive and produce epithelial monolayers in culture media made hyperosmotic with sodium chloride and urea. 1990

W S Woolverton, and S Githens, and R O'Dell-Smith, and C K Bartell
Department of Biological Sciences, University of New Orleans, Louisiana 70148.

The capacity of papillary cells to adapt to elevated osmotic concentrations is unusual among mammalian cells. This capacity was evaluated by using primary tissue culture. Viability and growth of cells in rat renal papillary tissue explants were assessed after culture in media adjusted with urea and sodium chloride to various osmotic concentrations between 300 and 1,500 mOsm/kg water. The survival of cells, including cells resembling those of the collecting ducts and the loop of Henle, was greatest in medium adjusted to 1,000 mOsm with equiosmolar amounts of the two solutes. At 1,500 mOsm only cuboidal tubular epithelium resembling collecting duct epithelial cells survived. In contrast, cells of cortical tissue survived and grew at 300 and 640 mOsm, but not at 1,000 mOsm or above. Epithelial monolayers appeared to proliferate from collecting ducts and spread over the surface of the explants as well as onto the glass surface in the culture dish. Epithelial growth of medullary tissue was most rapid at 300 mOsm and was slower at 700 and 1,000 mOsm. Monolayers did not form at 1,500 mOsm; however, epithelial overgrowth of explants did occur. Hydropenia in the donor animal did not significantly affect the viability or growth of cultured papillary tissue. Explants cultured for 5 days at 300 mOsm followed by a stepwise increase in medium osmolality to 1,100 or 1,500 mOsm and cultured for 3 more days showed low or no survival whereas explants cultured at 700 mOsm survived such increases. Explants cultured for 5 days at 1,500 mOsm survived and grew monolayers when lowered to 300 mOsm. Poor viability and no epithelial proliferation were observed in explants cultured in medium adjusted to 900 mOsm with either urea or sodium chloride alone, suggesting that a mixture of the two solutes in the extracellular space, as found in vivo, may be essential in achieving elevated osmolalities.

UI MeSH Term Description Entries
D006982 Hypertonic Solutions Solutions that have a greater osmotic pressure than a reference solution such as blood, plasma, or interstitial fluid. Hypertonic Solution,Solution, Hypertonic,Solutions, Hypertonic
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D008297 Male Males
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001834 Body Water Fluids composed mainly of water found within the body. Water, Body
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005260 Female Females

Related Publications

W S Woolverton, and S Githens, and R O'Dell-Smith, and C K Bartell
July 1994, The Journal of experimental zoology,
W S Woolverton, and S Githens, and R O'Dell-Smith, and C K Bartell
September 1985, Japanese circulation journal,
W S Woolverton, and S Githens, and R O'Dell-Smith, and C K Bartell
May 1988, Journal of cellular physiology,
W S Woolverton, and S Githens, and R O'Dell-Smith, and C K Bartell
January 1986, Renal physiology,
W S Woolverton, and S Githens, and R O'Dell-Smith, and C K Bartell
March 1966, The American journal of physiology,
W S Woolverton, and S Githens, and R O'Dell-Smith, and C K Bartell
September 1935, The Journal of clinical investigation,
W S Woolverton, and S Githens, and R O'Dell-Smith, and C K Bartell
January 1985, The Journal of biological chemistry,
W S Woolverton, and S Githens, and R O'Dell-Smith, and C K Bartell
January 1977, Clinical and experimental pharmacology & physiology,
W S Woolverton, and S Githens, and R O'Dell-Smith, and C K Bartell
September 1984, Current eye research,
W S Woolverton, and S Githens, and R O'Dell-Smith, and C K Bartell
December 1970, Metabolism: clinical and experimental,
Copied contents to your clipboard!