Analysis of the src gene of sarcoma viruses generated by recombination between transformation-defective mutants and quail cellular sequences. 1979

L H Wang, and C Moscovici, and R E Karess, and H Hanafusa

Tumors were produced in quails about 2 months after injection with a transformation-defective mutant of the Schmidt-Ruppin strain of Rous sarcoma virus, subgroup A (SR-A), that retains a small portion of the src gene. Sarcoma viruses were isolated from each of five such tumors. A transformation-defective mutant which has a nearly complete deletion of the src gene was unable to induce tumors. The avian sarcoma viruses recovered from quail tumors (rASV-Q) had biological properties similar to those of the avian sarcoma viruses previously acquired from chicken tumors (rASV-C); these chicken tumors had been induced by the same transformation-defective mutants. Both rASV-Q and rASV-C transformed cells in culture with similar focus morphology and produced tumors within 7 to 14 days after injection into chickens or quails. The size of rASV-Q genomic RNA was indistinguishable from that of SR-A by polyacrylamide gel electrophoresis. The sequences of rASV-Q RNA genomes were analyzed and compared with those of the parental transformation-defective virus, SR-A and of rASV-C by RNase T1 fingerprinting and oligonucleotide mapping. We found that the src sequences of all five isolates of rASV-Q were identical to each other but different from those of SR-A and rASV-C. Of 13 oligonucleotides of rASV-Q identified as src specific, two were not found in either SR-A or rASV-C RNA. Furthermore, some oligonucleotides present in SR-A or rASV-C or both were absent in rASV-Q. No differences were found for the sequences outside the src region in any of the viruses examined. In addition, rASV-Q-infected cells possessed a 60,000-dalton protein specifically precipitable by rabbit serum raised against SR-D-induced tumors. The facts that the src sequences are essentially the same for rASV's recovered from one animal species and different for rASV's obtained from different species provide conclusive evidence that cellular sequences of normal birds were inserted into the viral genome and supplied to the resulting recombinant viruses genetic information for cell transformation.

UI MeSH Term Description Entries
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003370 Coturnix A genus of BIRDS in the family Phasianidae, order GALLIFORMES, containing the common European and other Old World QUAIL. Japanese Quail,Coturnix japonica,Japanese Quails,Quail, Japanese,Quails, Japanese
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001355 Alpharetrovirus A genus of the family RETROVIRIDAE with type C morphology, that causes malignant and other diseases in wild birds and domestic fowl. Avian Erythroblastosis Virus,Retroviruses Type C, Avian,Type C Avian Retroviruses,Avian Leukosis-Sarcoma Viruses,Erythroblastosis Virus, Avian,Retroviruses, ALV-Related,ALV-Related Retrovirus,ALV-Related Retroviruses,Alpharetroviruses,Avian Erythroblastosis Viruses,Avian Leukosis Sarcoma Viruses,Avian Leukosis-Sarcoma Virus,Erythroblastosis Viruses, Avian,Leukosis-Sarcoma Virus, Avian,Leukosis-Sarcoma Viruses, Avian,Retrovirus, ALV-Related,Retroviruses, ALV Related,Virus, Avian Erythroblastosis,Virus, Avian Leukosis-Sarcoma,Viruses, Avian Erythroblastosis,Viruses, Avian Leukosis-Sarcoma
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA

Related Publications

L H Wang, and C Moscovici, and R E Karess, and H Hanafusa
January 1980, Cold Spring Harbor symposia on quantitative biology,
L H Wang, and C Moscovici, and R E Karess, and H Hanafusa
December 1977, Journal of virology,
L H Wang, and C Moscovici, and R E Karess, and H Hanafusa
July 1980, Journal of virology,
L H Wang, and C Moscovici, and R E Karess, and H Hanafusa
November 1985, Molecular and cellular biology,
L H Wang, and C Moscovici, and R E Karess, and H Hanafusa
December 1978, Proceedings of the National Academy of Sciences of the United States of America,
L H Wang, and C Moscovici, and R E Karess, and H Hanafusa
September 1986, Journal of virology,
Copied contents to your clipboard!