Sub-second high dose rate brachytherapy Monte Carlo dose calculations with bGPUMCD. 2012

Sami Hissoiny, and Michel D'Amours, and Benoıt Ozell, and Philippe Despres, and Luc Beaulieu
École polytechnique de Montréal, Département de génie informatique et génie logiciel, Montréal, Québec H3T 1J4, Canada. sami.hissoiny@polymtl.ca

OBJECTIVE To establish the accuracy and speed of bGPUMCD, a GPU-oriented Monte Carlo code used for high dose rate brachytherapy dose calculations. The first objective is to evaluate the time required for dose calculation when full Monte Carlo generated dose distribution kernels are used for plan optimization. The second objective is to assess the accuracy and speed when recalculating pre-optimized plans, consisting of many dwell positions. METHODS bGPUMCD is tested with three clinical treatment plans : one prostate case, one breast case, and one rectum case with a shielded applicator. Reference distributions, generated with GEANT4, are used as a basis of comparison. Calculations of full dose distributions of pre-optimized treatment plans as well as single dwell dosimetry are performed. Single source dosimetry, based on TG-43 parameters reproduction, is also presented for the microSelectron V2 (Nucletron, Veenendaal, The Netherlands). RESULTS In timing experiments, the computation of single dwell position dose kernels takes between 0.25 and 0.5 s. bGPUMCD can compute full dose distributions of previously optimized plans in ∼2 s. bGPUMCD is capable of computing pre-optimized brachytherapy plans within 1% for the prostate case and 2% for the breast and shielded applicator cases, when comparing the dosimetric parameters D90 and V100 of the reference (GEANT4) and bGPUMCD distributions. For all voxels within the target, an absolute average difference of approximately 1% is found for the prostate case, less than 2% for the breast case and less than 2% for the rectum case with shielded applicator. Larger point differences (>5%) are found within bony regions in the prostate case, where bGPUMCD underdoses compared to GEANT4. Single source dosimetry results are mostly within 2% for the radial function and within 1%-4% for the anisotropic function. CONCLUSIONS bGPUMCD has the potential to allow for fast MC dose calculation in a clinical setting for all phases of HDR treatment planning, from dose kernel calculations for plan optimization to plan recalculation.

UI MeSH Term Description Entries
D008297 Male Males
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D001918 Brachytherapy A collective term for interstitial, intracavity, and surface radiotherapy. It uses small sealed or partly-sealed sources that may be placed on or near the body surface or within a natural body cavity or implanted directly into the tissues. Curietherapy,Implant Radiotherapy,Plaque Therapy, Radioisotope,Radioisotope Brachytherapy,Radiotherapy, Interstitial,Radiotherapy, Intracavity,Radiotherapy, Surface,Brachytherapy, Radioisotope,Interstitial Radiotherapy,Intracavity Radiotherapy,Radioisotope Plaque Therapy,Radiotherapy, Implant,Surface Radiotherapy,Therapy, Radioisotope Plaque
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Sami Hissoiny, and Michel D'Amours, and Benoıt Ozell, and Philippe Despres, and Luc Beaulieu
January 2016, Brachytherapy,
Sami Hissoiny, and Michel D'Amours, and Benoıt Ozell, and Philippe Despres, and Luc Beaulieu
November 2008, International journal of radiation oncology, biology, physics,
Sami Hissoiny, and Michel D'Amours, and Benoıt Ozell, and Philippe Despres, and Luc Beaulieu
December 2013, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
Sami Hissoiny, and Michel D'Amours, and Benoıt Ozell, and Philippe Despres, and Luc Beaulieu
August 2001, Medical physics,
Sami Hissoiny, and Michel D'Amours, and Benoıt Ozell, and Philippe Despres, and Luc Beaulieu
June 1995, Medical physics,
Sami Hissoiny, and Michel D'Amours, and Benoıt Ozell, and Philippe Despres, and Luc Beaulieu
August 2019, Zeitschrift fur medizinische Physik,
Sami Hissoiny, and Michel D'Amours, and Benoıt Ozell, and Philippe Despres, and Luc Beaulieu
January 2015, PloS one,
Sami Hissoiny, and Michel D'Amours, and Benoıt Ozell, and Philippe Despres, and Luc Beaulieu
November 1998, Medical physics,
Sami Hissoiny, and Michel D'Amours, and Benoıt Ozell, and Philippe Despres, and Luc Beaulieu
November 2000, Medical physics,
Sami Hissoiny, and Michel D'Amours, and Benoıt Ozell, and Philippe Despres, and Luc Beaulieu
April 1998, Medical physics,
Copied contents to your clipboard!