Functional topography of cat primary auditory cortex: distribution of integrated excitation. 1990

C E Schreiner, and J R Mendelson
Coleman Laboratory, Department of Otolaryngology, University of California, San Francisco 94143-0732.

1. Neuronal responses to tones and transient stimuli were mapped with microelectrodes in the primary auditory cortex (AI) of barbiturate anesthetized cats. Most of the dorsoventral extent of AI was mapped with multiple-unit recordings in the high-frequency domain (between 5.8 and 26.3 kHz) of all six studied cases. The spatial distributions of 1) sharpness of tuning measured with pure tones and 2) response magnitudes to a broadband transient were determined in each of three intensively studied cases. 2. The sharpness of tuning of integrated cluster responses was defined 10 dB above threshold (Q10 dB, integrated excitatory bandwidth). The spatial reconstructions revealed a frequency-independent maximum located near the center of the dorsoventral extent of AI. The sharpness of tuning gradually decreased toward the dorsal and ventral border of AI in all three cases. 3. The sharpness of tuning 40 dB above response threshold was also analyzed (Q40 dB). The Q40 dB values were less than one-half of the corresponding Q10 dB value. The spatial distribution showed a maximum in the center of AI, similar to the Q10 dB distribution. In two out of three cases, restricted additional maxima were recorded dorsal to the main maximum. Overall, Q10 dB and Q40 dB were only moderately correlated, indicating that the integrated excitatory bandwidth at higher stimulus levels can be influenced by additional mechanisms that are not active at lower levels. 4. The magnitude of excitatory responses to a broadband transient (frequency-step response) was determined. The normalized response magnitude varied between less than 1% and up to 100% relative to a characteristic frequency (CF) tone response. The step-response magnitude showed a systematic spatial distribution. An area dorsal to the Q10 dB maximum consistently showed the largest response magnitude surrounded by areas of lower responsivity. A second spatially more restricted maximum was recorded in the ventral-third of each map. Areas with high-transient responsiveness coincided with areas of broad integrated excitatory bandwidth at comparable stimulus levels. 5. The distribution of excitation produced by narrowband and broadband signals suggest that there exists a clear functional organization in the isofrequency domain of AI that is orthogonal to the main cochleotopic organization of the AI. Systematic spatial variations of the integrated excitatory bandwidth reflect underlying cortical processing capacities that may contribute to a parallel analysis of spectral complexity, e.g., spectral shape and contrast, at any given frequency.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000758 Anesthesia A state characterized by loss of feeling or sensation. This depression of nerve function is usually the result of pharmacologic action and is induced to allow performance of surgery or other painful procedures.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001303 Auditory Cortex The region of the cerebral cortex that receives the auditory radiation from the MEDIAL GENICULATE BODY. Brodmann Area 41,Brodmann Area 42,Brodmann's Area 41,Heschl Gyrus,Heschl's Gyrus,Auditory Area,Heschl's Convolutions,Heschl's Gyri,Primary Auditory Cortex,Temporal Auditory Area,Transverse Temporal Gyri,Area 41, Brodmann,Area 41, Brodmann's,Area 42, Brodmann,Area, Auditory,Area, Temporal Auditory,Auditory Areas,Auditory Cortex, Primary,Brodmanns Area 41,Cortex, Auditory,Cortex, Primary Auditory,Gyrus, Heschl,Gyrus, Heschl's,Gyrus, Transverse Temporal,Heschl Convolutions,Heschl Gyri,Heschls Convolutions,Heschls Gyri,Heschls Gyrus,Primary Auditory Cortices,Temporal Auditory Areas,Temporal Gyrus, Transverse,Transverse Temporal Gyrus

Related Publications

C E Schreiner, and J R Mendelson
January 2016, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C E Schreiner, and J R Mendelson
January 1970, Journal of neurophysiology,
C E Schreiner, and J R Mendelson
January 1991, Acta oto-laryngologica. Supplementum,
C E Schreiner, and J R Mendelson
May 1991, Journal of neurophysiology,
C E Schreiner, and J R Mendelson
June 1994, The Journal of comparative neurology,
C E Schreiner, and J R Mendelson
January 1991, Experimental brain research,
C E Schreiner, and J R Mendelson
February 1986, Electroencephalography and clinical neurophysiology,
Copied contents to your clipboard!