A microtiter well assay for quantitative measurement of estrogen receptor binding to estrogen-responsive elements. 1990

L B Ludwig, and C M Klinge, and F V Peale, and R A Bambara, and S Zain, and R Hilf
Department of Biochemistry, University of Rochester School of Medicine and Dentistry, New York 14642.

Reproducible, rapid measurement of estrogen receptor (ER) binding to DNA was accomplished in microtiter wells treated so that ER-DNA complexes or DNA bound in preference to free ER. Mixtures of 35S-labeled DNA and [3H]estrogen-charged ER ([3H]ER), incubated to equilibrium in microfuge tubes, were transferred to microtiter wells previously treated with histone followed by gelatin. After binding of the DNA or ER-DNA complex to the treated wells, free ER was removed by washing. Radioactivity retained in each well was measured by placing individual wells from snap-apart microtiter plates directly in scintillation fluid. Binding of DNA was saturable, and ER-DNA complex binding was complete within 2 h at 4 C. The use of 35S-labeled DNA and [3H]ER allowed stoichiometric determination of ER bound to DNA. The amount of ER specifically bound to a consensus estrogen-responsive element (ERE) containing the inverted repeat GGTCAgagTGACC was determined by comparing ER bound to plasmid containing or lacking the ERE. At saturating concentrations of ER, plasmids bearing one, two, and four EREs in tandem bound approximately one, two, and four dimeric ER molecules, respectively. Scatchard analysis of saturation binding data revealed a Kd of 0.15 nM for specific ER binding to a single ERE site. Thus, the assay detects ER retaining both DNA-binding and estrogen-binding functions. ER complexed with DNA in the well was also detected using a monoclonal antibody specific for the receptor. Simple modifications of this method would allow study of other DNA-protein interactions.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005780 Gelatin A product formed from skin, white connective tissue, or bone COLLAGEN. It is used as a protein food adjuvant, plasma substitute, hemostatic, suspending agent in pharmaceutical preparations, and in the manufacturing of capsules and suppositories. Gelafusal
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

L B Ludwig, and C M Klinge, and F V Peale, and R A Bambara, and S Zain, and R Hilf
December 1996, Clinical chemistry,
L B Ludwig, and C M Klinge, and F V Peale, and R A Bambara, and S Zain, and R Hilf
November 1998, The Journal of biological chemistry,
L B Ludwig, and C M Klinge, and F V Peale, and R A Bambara, and S Zain, and R Hilf
January 2010, The Journal of biological chemistry,
L B Ludwig, and C M Klinge, and F V Peale, and R A Bambara, and S Zain, and R Hilf
December 1989, The EMBO journal,
L B Ludwig, and C M Klinge, and F V Peale, and R A Bambara, and S Zain, and R Hilf
April 1996, The Journal of steroid biochemistry and molecular biology,
L B Ludwig, and C M Klinge, and F V Peale, and R A Bambara, and S Zain, and R Hilf
September 1980, Journal of clinical microbiology,
L B Ludwig, and C M Klinge, and F V Peale, and R A Bambara, and S Zain, and R Hilf
May 1993, Biochemical pharmacology,
L B Ludwig, and C M Klinge, and F V Peale, and R A Bambara, and S Zain, and R Hilf
October 1997, The Journal of biological chemistry,
L B Ludwig, and C M Klinge, and F V Peale, and R A Bambara, and S Zain, and R Hilf
June 1999, Molecular endocrinology (Baltimore, Md.),
L B Ludwig, and C M Klinge, and F V Peale, and R A Bambara, and S Zain, and R Hilf
April 1991, Biochemical and biophysical research communications,
Copied contents to your clipboard!